Suppr超能文献

大语言模型生成的信号网络基准测试。

Benchmarking of signaling networks generated by large language models.

作者信息

Tewari Jeevan, Dahl Benjamin W, Saucerman Jeffrey J

机构信息

co-equal contributors.

Department of Biomedical Engineering, University of Virginia.

出版信息

bioRxiv. 2025 Jul 29:2025.07.28.667217. doi: 10.1101/2025.07.28.667217.

Abstract

Computational models of signaling networks provide frameworks for predicting how molecular cues guide cell decisions. But they are typically limited by manual curation from incomplete literature. Here, we test whether general-purpose large language models (LLMs) generate accurate models of signaling networks. We find that general purpose LLMs generate 24-58% of the reactions of literature-curated networks for cardiomyocyte hypertrophy, myofibroblast activation, and mechano-signaling, and predicting network responses to perturbations with accuracies of 5-26%. While current general-purpose LLMs generate signaling networks with limited accuracy, this study provides a pipeline and benchmarks to guide future improvements.

摘要

信号网络的计算模型为预测分子信号如何引导细胞决策提供了框架。但它们通常受到来自不完整文献的人工整理的限制。在这里,我们测试通用大语言模型(LLMs)是否能生成准确的信号网络模型。我们发现,通用大语言模型生成了文献整理网络中24%-58%的心肌细胞肥大、肌成纤维细胞激活和机械信号反应,并以5%-26%的准确率预测网络对扰动的反应。虽然目前的通用大语言模型生成信号网络的准确性有限,但这项研究提供了一个流程和基准,以指导未来的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a65a/12324320/e18831d74842/nihpp-2025.07.28.667217v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验