Suppr超能文献

一种用于可视化和识别电生理细胞类型的多模态方法。

A multimodal approach for visualization and identification of electrophysiological cell types .

作者信息

Lee Eric Kenji, Gül Asım Emre, Heller Greggory, Lakunina Anna, Yu Han, Shelton Andrew, Olsen Shawn, Steinmetz Nicholas A, Hurwitz Cole, Jaramillo Santiago, Przytycki Pawel F, Chandrasekaran Chandramouli

机构信息

Department of Psychological and Brain Sciences, Boston University, Boston, 02115, MA, USA.

Department of Psychology, Boğaziçi University, Beşiktaş, 34342, Istanbul, Türkiye.

出版信息

bioRxiv. 2025 Jul 31:2025.07.24.666654. doi: 10.1101/2025.07.24.666654.

Abstract

Neurons of different types perform diverse computations and coordinate their activity during sensation, perception, and action. While electrophysiological recordings can measure the activity of many neurons simultaneously, identifying cell types during these experiments remains difficult. To identify cell types, we developed PhysMAP, a framework that weighs multiple electrophysiological modalities simultaneously to obtain interpretable multimodal representations. We apply PhysMAP to seven datasets and demonstrate that these multimodal representations are better aligned with known transcriptomically-defined cell types than any single modality alone. We then show that such alignment allows PhysMAP to better identify putative cell types in the absence of ground truth. We also demonstrate how annotated datasets can be used to infer multiple cell types simultaneously in unannotated datasets and show that the properties of inferred types are consistent with the known properties of these cell types. Finally, we provide a first-of-its-kind demonstration of how PhysMAP can help understand how multiple cell types interact to drive circuit dynamics. Collectively, these results demonstrate that multimodal representations from PhysMAP enable the study of multiple cell types simultaneously, thus providing insight into neural circuit dynamics.

摘要

不同类型的神经元执行着多样的计算,并在感觉、感知和行动过程中协调它们的活动。虽然电生理记录可以同时测量许多神经元的活动,但在这些实验中识别细胞类型仍然很困难。为了识别细胞类型,我们开发了PhysMAP,这是一个同时权衡多种电生理模式以获得可解释的多模态表示的框架。我们将PhysMAP应用于七个数据集,并证明这些多模态表示比任何单一模式都能更好地与已知的转录组定义的细胞类型对齐。然后我们表明,这种对齐使PhysMAP能够在没有真实数据的情况下更好地识别假定的细胞类型。我们还展示了如何使用注释数据集来同时推断未注释数据集中的多种细胞类型,并表明推断类型的属性与这些细胞类型的已知属性一致。最后,我们首次展示了PhysMAP如何有助于理解多种细胞类型如何相互作用以驱动电路动态。总的来说,这些结果表明,PhysMAP的多模态表示能够同时研究多种细胞类型,从而深入了解神经回路动态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验