Wang Melanie J, Rastegar Aref, Kung Theodore A
Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA.
Breast Cancer Res Treat. 2025 Aug 6. doi: 10.1007/s10549-025-07799-z.
Breast cancer remains a global public health burden. This study aimed to evaluate the readability of breast cancer articles shared on X (formerly Twitter) during Breast Cancer Awareness Month (October 2024), and it explores the possibility of using artificial intelligence (AI) to improve readability.
We identified the top articles (n = 377) from posts containing #breastcancer on X during October 2024. Each article was analyzed using 9 established readability tests: Automated Readability Index (ARI), Coleman-Liau, Flesch-Kincaid, Flesch Reading Ease, FORCAST Readability Formula, Fry Graph, Gunning Fog Index, Raygor Readability Estimate, and Simple Measure of Gobbledygook (SMOG) Readability Formula. The study categorized sharing entities into five groups: academic medical centers, healthcare providers, government institutions, scientific journals, and all others. This comprehensive approach aimed to evaluate the readability of breast cancer articles across various sources during a critical awareness period of peak public engagement. A pilot study was simultaneously conducted using AI to improve readability. Statistical analysis was performed using SPSS.
A total of 377 articles shared by the following entities were analyzed: academic medical centers (35, 9.3%), healthcare providers (57, 15.2%), government institutions (21, 5.6%), scientific journals (63, 16.8%), and all others (199, 53.1%). Government institutions shared articles with the lowest average readability grade level (12.71 ± 0.79). Scientific journals (16.57 ± 0.09), healthcare providers (15.49 ± 0.32), all others (14.89 ± 0.17), and academic medical centers (13.56 ± 0.39) had higher average readability grade levels. Article types were also split into different categories: patient education (222, 58.9%), open-access journal (119, 31.5%), and full journal (37, 9.6%). Patient education articles (15.19 ± 0.17) had the lowest average readability grade level. Open-access and full journals had an average readability grade level of 16.65 ± 0.06 and 16.53 ± 0.10, respectively. The mean values for Flesch Reading Ease Score are patient education 38.14 ± 1.2, open-access journals 16.14 ± 0.89, full journals 17.69 ± 2.14. Of note, lower readability grade levels indicate easier-to-read text, while higher Flesch Reading Ease scores indicate more ease of reading. In a demonstration using AI to improve readability grade level of 5 sample articles, AI successfully lowered the average readability grade level from 12.58 ± 0.83 to 6.56 ± 0.28 (p < 0.001).
Our findings highlight a critical gap between the recommended and actual readability levels of breast cancer information shared on a popular social media platform. While some institutions are producing more accessible content, there is a pressing need for standardization and improvement across all sources. To address this issue, sources may consider leveraging AI technology as a potential tool for creating patient resources with appropriate readability levels.
乳腺癌仍然是一个全球公共卫生负担。本研究旨在评估在乳腺癌宣传月(2024年10月)期间在X(原推特)上分享的乳腺癌文章的可读性,并探讨使用人工智能(AI)提高可读性的可能性。
我们确定了2024年10月期间X上包含#乳腺癌的帖子中的热门文章(n = 377)。每篇文章都使用9种既定的可读性测试进行分析:自动可读性指数(ARI)、科尔曼-廖公式、弗莱施-金凯德公式、弗莱施阅读简易度、FORCAST可读性公式、弗莱阅读图、冈宁雾指数、雷戈尔可读性估计和胡言乱语简易度量表(SMOG)可读性公式。该研究将分享实体分为五组:学术医疗中心、医疗保健提供者、政府机构、科学期刊和其他所有机构。这种全面的方法旨在评估在公众参与度最高的关键宣传期间各种来源的乳腺癌文章的可读性。同时进行了一项使用人工智能提高可读性的试点研究。使用SPSS进行统计分析。
共分析了以下实体分享的377篇文章:学术医疗中心(35篇,9.3%)、医疗保健提供者(57篇,15.2%)、政府机构(21篇,5.6%)、科学期刊(63篇,16.8%)和其他所有机构(199篇,53.1%)。政府机构分享的文章平均可读性年级水平最低(12.71±0.79)。科学期刊(16.57±0.09)、医疗保健提供者(15.49±0.32)、其他所有机构(14.89±0.17)和学术医疗中心(13.56±0.39)的平均可读性年级水平较高。文章类型也分为不同类别:患者教育(222篇,58.9%)、开放获取期刊(119篇,31.5%)和完整期刊(37篇,9.6%)。患者教育文章(15.19±0.17)的平均可读性年级水平最低。开放获取期刊和完整期刊的平均可读性年级水平分别为16.65±0.06和16.53±0.10。弗莱施阅读简易度得分的平均值为:患者教育38.14±1.2,开放获取期刊16.14±0.89,完整期刊17.69±2.14。值得注意的是,较低的可读性年级水平表明文本更易读,而较高的弗莱施阅读简易度得分表明阅读更轻松。在一项使用人工智能提高5篇样本文章可读性年级水平的演示中,人工智能成功地将平均可读性年级水平从12.58±0.83降至6.56±0.28(p < 0.001)。
我们的研究结果突出了在一个热门社交媒体平台上分享的乳腺癌信息的推荐可读性水平与实际可读性水平之间的关键差距。虽然一些机构正在制作更易获取的内容,但所有来源都迫切需要标准化和改进。为了解决这个问题,各来源可考虑将人工智能技术作为创建具有适当可读性水平的患者资源的潜在工具。