Suppr超能文献

迈向结膜充血的自动化评估:一种半监督人工智能方法。

Toward automated assessment of conjunctival hyperemia: A semisupervised artificial intelligence approach.

作者信息

Wong Damon, Ng Yvonne, Eppenberger Leila Sara, Cherecheanu Alina Popa, Anghelache Anca, Toma Eduard, Coroleuca Ruxandra, Garcia-Feijoo Julian, Garhöfer Gerhard, Schmetterer Leopold

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.

SERI-NTU Advanced Ocular Engineering (STANCE) Program, Singapore, Singapore.

出版信息

Ann N Y Acad Sci. 2025 Sep;1551(1):201-209. doi: 10.1111/nyas.70009. Epub 2025 Aug 6.

Abstract

This paper develops an automated approach for conjunctival hyperemia grading from slit-lamp images using semisupervised learning. We conducted a retrospective study including slit-lamp images from two study sites. Two independent graders assessed the severity of hyperemia according to the Efron Grading Scales. Segmentation of the conjunctiva and its vessels was performed using semisupervised segmentation with limited labeled data. Conjunctival vessel densities were estimated from the model outputs and compared against the manual clinical Efron gradings. Three hundred and seventeen slit-lamp images from the primary site and 164 from an external site were included. The semisupervised models with unlabeled data demonstrated significantly improved segmentation compared to a baseline fully supervised model using only the labeled data (p < 0.001). Calculated conjunctival vessel densities showed correlations of 0.86 [0.76, 0.93] with ground truth vessel densities. Comparisons of vessel densities against mean manual clinical Efron gradings showed correlations of 0.83 and 0.80 for the test and external datasets, which were comparable to the inter-rater agreements of 0.82 [0.68, 0.90] and 0.75 [0.67, 0.81] in the datasets, respectively. Conjunctival vessel densities obtained with semisupervised learning showed good agreement with clinical grading of conjunctival hyperemia. This approach may be applied toward an automatic, objective assessment of the conjunctiva.

摘要

本文开发了一种使用半监督学习从裂隙灯图像中进行结膜充血分级的自动化方法。我们进行了一项回顾性研究,纳入了来自两个研究地点的裂隙灯图像。两名独立的分级人员根据埃弗龙分级量表评估充血的严重程度。使用带有有限标记数据的半监督分割方法对结膜及其血管进行分割。从模型输出中估计结膜血管密度,并与手动临床埃弗龙分级进行比较。纳入了来自主要地点的317张裂隙灯图像和来自外部地点的164张图像。与仅使用标记数据的基线全监督模型相比,带有未标记数据的半监督模型在分割方面有显著改善(p < 0.001)。计算得出的结膜血管密度与真实血管密度的相关性为0.86 [0.76, 0.93]。血管密度与平均手动临床埃弗龙分级的比较显示,测试数据集和外部数据集的相关性分别为0.83和0.80,这与数据集中评分者间的一致性0.82 [0.68, 0.90]和0.75 [0.67, 0.81]相当。通过半监督学习获得的结膜血管密度与结膜充血的临床分级显示出良好的一致性。这种方法可用于对结膜进行自动、客观的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40f0/12448267/46b67aeb3459/NYAS-1551-201-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验