Department of Ophthalmology, University of Washington, Seattle, WA, USA.
Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA.
Transl Vis Sci Technol. 2024 Nov 4;13(11):2. doi: 10.1167/tvst.13.11.2.
Automated segmentation software in optical coherence tomography (OCT) devices is usually developed for and primarily tested on common diseases. Therefore segmentation accuracy of automated software can be limited in eyes with rare pathologies.
We sought to develop a semisupervised deep learning segmentation model that segments 10 retinal layers and four retinal features in eyes with Macular Telangiectasia Type II (MacTel) using a small labeled dataset by leveraging unlabeled images. We compared our model against popular supervised and semisupervised models, as well as conducted ablation studies on the model itself.
Our model significantly outperformed all other models in terms of intersection over union on the 10 retinal layers and two retinal features in the test dataset. For the remaining two features, the pre-retinal space above the internal limiting membrane and the background below the retinal pigment epithelium, all of the models performed similarly. Furthermore, we showed that using more unlabeled images improved the performance of our semisupervised model.
Our model improves segmentation performance over supervised models by leveraging unlabeled data. This approach has the potential to improve segmentation performance for other diseases, where labeled data is limited but unlabeled data abundant.
Improving automated segmentation of MacTel pathology on OCT imaging by leveraging unlabeled data may enable more accurate assessment of disease progression, and this approach may be useful for improving feature identification and location on OCT in other rare diseases as well.
光学相干断层扫描(OCT)设备中的自动化分割软件通常是针对常见疾病开发的,并主要在这些疾病上进行测试。因此,自动化软件的分割准确性在罕见病变的眼中可能会受到限制。
我们试图开发一种半监督深度学习分割模型,该模型使用少量标记数据集通过利用未标记的图像来分割 II 型黄斑毛细血管扩张症(MacTel)眼中的 10 层视网膜和四个视网膜特征。我们将我们的模型与流行的监督和半监督模型进行了比较,并对模型本身进行了消融研究。
在测试数据集的 10 层视网膜和两个视网膜特征的交并比方面,我们的模型明显优于所有其他模型。对于其余的两个特征,即内界膜上方的视网膜前空间和视网膜色素上皮下方的背景,所有模型的表现都相似。此外,我们表明,使用更多的未标记图像可以提高我们的半监督模型的性能。
我们的模型通过利用未标记数据来提高分割性能,优于监督模型。这种方法有可能改善其他疾病的分割性能,在这些疾病中,标记数据有限但未标记数据丰富。
翻译是否准确,取决于原文的内容。若原文内容有出入,译文也会随之改变。因此,以上译文仅供参考。