Suppr超能文献

DEF-DSVM:一种基于脑电图信号的阿尔茨海默病多方面分析与诊断的深度集成特征学习和深度支持向量机方法。

DEF-DSVM: A deep ensemble feature learning and deepSVM approach for multifaceted analysis and diagnosis of Alzheimer's disease from EEG signals.

作者信息

Hesari Shabnam, Ghaffari Hamidreza, Rezaee Khosro

机构信息

Department of Electrical and Computer Engineering, Fe.C., Islamic Azad University, Ferdows, Iran.

Department of Biomedical Engineering, Meybod University, Meybod, Iran.

出版信息

Methods. 2025 Oct;242:169-186. doi: 10.1016/j.ymeth.2025.08.003. Epub 2025 Aug 6.

Abstract

Early detection of Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI), is paramount for timely intervention and effective disease management. This study introduces a novel computer-aided diagnostic model that leverages electroencephalogram (EEG) data to precisely identify and classify AD and MCI. A comprehensive preprocessing pipeline is employed, incorporating discrete wavelet transform (DWT) for EEG signal decomposition into relevant subbands and subsequent signal windowing to address non-stationarity. Spectrograms derived from these preprocessed signals serve as input for a deep ensemble feature learning and deep support vector machine (DEF-DSVM) architecture. The DEF-DSVM model significantly enhances the accuracy of diagnosing both MCI and AD, achieving an impressive 98.17% accuracy rate that surpasses contemporary state-of-the-art methods. Beyond diagnostic precision, the model effectively identifies specific EEG subbands-namely alpha, theta, and delta-instrumental in elucidating the pathophysiology of AD and MCI. The structure's generalizability and robustness are validated using the Figshare dataset, encompassing, AD, MCI, and control classes. To ensure a rigorous assessment of the model's performance, the Leave-One-Subject-Out (LOSO) cross-validation procedure is employed in lieu of the traditional K-fold approach, mitigating the risk of overoptimistic performance estimates and providing a more accurate reflection of the model's ability to generalize to novel, unseen subjects. Further evaluation of the method's generalizability through its application to an EEG dataset related to attention deficit hyperactivity disorder (ADHD) highlights its broader clinical utility across various neurodegenerative disorders. These findings establish the DEF-DSVM model as a reliable and potent tool for the early diagnosis and monitoring of AD and MCI, offering substantial accuracy gains and demonstrating its potential for widespread application across different neurological conditions.

摘要

早期发现阿尔茨海默病(AD)及其前驱症状轻度认知障碍(MCI)对于及时干预和有效管理疾病至关重要。本研究引入了一种新型计算机辅助诊断模型,该模型利用脑电图(EEG)数据精确识别和分类AD和MCI。采用了一个全面的预处理流程,包括离散小波变换(DWT)将EEG信号分解为相关子带,以及随后的信号加窗处理以解决非平稳性问题。从这些预处理信号中得出的频谱图作为深度集成特征学习和深度支持向量机(DEF-DSVM)架构的输入。DEF-DSVM模型显著提高了诊断MCI和AD的准确性,达到了令人印象深刻的98.17%的准确率,超过了当代最先进的方法。除了诊断精度外,该模型还有效地识别了在阐明AD和MCI病理生理学方面起作用的特定EEG子带,即α、θ和δ。使用包含AD、MCI和对照类别的Figshare数据集验证了该结构的通用性和稳健性。为了确保对模型性能进行严格评估,采用留一受试者出(LOSO)交叉验证程序代替传统的K折方法,降低了性能估计过度乐观的风险,并更准确地反映了模型对新的、未见过的受试者的泛化能力。通过将该方法应用于与注意力缺陷多动障碍(ADHD)相关的EEG数据集进一步评估其通用性,突出了其在各种神经退行性疾病中的更广泛临床应用价值。这些发现将DEF-DSVM模型确立为AD和MCI早期诊断和监测的可靠且强大的工具,提供了显著的准确性提升,并展示了其在不同神经疾病中广泛应用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验