Suppr超能文献

用于稳健听觉脑电信号解码的基于Transformer的对比表征学习

Contrastive representation learning with transformers for robust auditory EEG decoding.

作者信息

Bollens Lies, Accou Bernd, Van Hamme Hugo, Francart Tom

机构信息

Dept. Neurosciences, ExpORL, KU Leuven, Leuven, Belgium.

Dept. of Electrical engineering (ESAT), PSI, KU Leuven, Leuven, Belgium.

出版信息

Sci Rep. 2025 Aug 6;15(1):28744. doi: 10.1038/s41598-025-13646-4.

Abstract

Decoding of continuous speech from electroencephalography (EEG) presents a promising avenue for understanding neural mechanisms of auditory processing and developing applications in hearing diagnostics. Recent advances in deep learning have improved decoding accuracy. However, challenges remain due to the low signal-to-noise ratio of the recorded brain signals. This study explores the application of contrastive learning, a self-supervised learning technique, to learn robust latent representations of EEG signals. We introduce a novel model architecture that leverages contrastive learning and transformer networks to capture relationships between auditory stimuli and EEG responses. Our model is evaluated on two tasks from the ICASSP 2023 Auditory EEG Decoding Challenge: a binary stimulus classification task (match-mismatch) and stimulus envelope decoding. We achieve state-of-the-art performance on both tasks, significantly outperforming previous winners with 87% accuracy in match-mismatch classification and a 0.176 Pearson correlation in envelope regression. Furthermore, we investigate the impact of model architecture, training set size, and finetuning on decoding performance, providing insights into the factors influencing model generalizability and accuracy. Our findings underscore the potential of contrastive learning for advancing the field of auditory EEG decoding and its potential applications in clinical settings.

摘要

从脑电图(EEG)中解码连续语音为理解听觉处理的神经机制以及开发听力诊断应用提供了一条很有前景的途径。深度学习的最新进展提高了解码准确率。然而,由于记录的脑信号信噪比低,挑战依然存在。本研究探索了对比学习(一种自监督学习技术)在学习EEG信号稳健潜在表征方面的应用。我们引入了一种新颖的模型架构,该架构利用对比学习和Transformer网络来捕捉听觉刺激与EEG反应之间的关系。我们的模型在ICASSP 2023听觉EEG解码挑战赛的两项任务上进行了评估:一个二元刺激分类任务(匹配-不匹配)和刺激包络解码。我们在这两项任务上均取得了领先的性能,在匹配-不匹配分类中以87%的准确率显著超过了之前的获胜者,在包络回归中皮尔逊相关系数达到0.176。此外,我们研究了模型架构、训练集大小和微调对解码性能的影响,为影响模型泛化性和准确性的因素提供了见解。我们的研究结果强调了对比学习在推动听觉EEG解码领域及其在临床环境中的潜在应用方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d43/12329020/bae85a2133de/41598_2025_13646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验