Suppr超能文献

使用阿联酋医疗记录的机器学习模型在黏多糖贮积症早期诊断中的比较

Comparison of machine learning models for mucopolysaccharidosis early diagnosis using UAE medical records.

作者信息

AlShehhi Aamna, Alblooshi Hiba, Fadul Ruba, Tumzghi Natnael, Tenaiji Amal Al, Harbi Mariam Al, Al-Jasmi Fatma

机构信息

Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.

ASPIRE Precision Medicine Research Institute, United Arab Emirates University, Abu Dhabi, United Arab Emirates.

出版信息

Sci Rep. 2025 Aug 6;15(1):28813. doi: 10.1038/s41598-025-13879-3.

Abstract

Rare diseases, such as Mucopolysaccharidosis (MPS), present significant challenges to the healthcare system. Some of the most critical challenges are the delay and the lack of accurate disease diagnosis. Early diagnosis of MPS is crucial, as it has the potential to significantly improve patients' response to treatment, thereby reducing the risk of complications or death. This study evaluates the performance of different machine learning (ML) models for MPS diagnosis using electronic health records (EHR) from the Abu Dhabi Health Services Company (SEHA). The retrospective cohort comprises 115 registered patients aged ≤ 19 Years old from 2004 to 2022. Using nested cross-validation, we trained different feature selection algorithms in combination with various ML algorithms and evaluated their performance with multiple evaluation metrics. Finally, the best-performing model was further interpreted using feature contributions analysis methods such as Shapley additive explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). We found that Naive Bayes trained on the domain expert selected features reported a superior performance with an accuracy of 0.93 (0.08), AUC of 0.96 (0.04), F1-score of 0.91 (0.1), and MCC of 0.86 (0.16). SHAP and LIME analysis that were conducted on the best-performing model highlighted key features related to dental manifestations and respiratory infections which are commonly presented in MPS patients, such as acute gingivitis, accretions on teeth, dental caries, acute pharyngitis, acute tonsillitis, and acute bronchitis. This study introduces a cost-effective screening approach for MPS disease using non-invasive EHR, which contributes to the advances in digital screening tools for the early diagnosis of rare diseases.

摘要

罕见病,如黏多糖贮积症(MPS),给医疗系统带来了重大挑战。其中一些最关键的挑战是诊断延迟和缺乏准确的疾病诊断。MPS的早期诊断至关重要,因为它有可能显著改善患者对治疗的反应,从而降低并发症或死亡的风险。本研究使用阿布扎比医疗服务公司(SEHA)的电子健康记录(EHR)评估了不同机器学习(ML)模型对MPS诊断的性能。回顾性队列包括来自2004年至2022年的115名年龄≤19岁的注册患者。使用嵌套交叉验证,我们结合各种ML算法训练了不同的特征选择算法,并使用多个评估指标评估了它们的性能。最后,使用诸如Shapley加法解释(SHAP)和局部可解释模型无关解释(LIME)等特征贡献分析方法对性能最佳的模型进行了进一步解释。我们发现,在领域专家选择的特征上训练的朴素贝叶斯表现出卓越的性能,准确率为0.93(0.08),AUC为0.96(0.04),F1分数为0.91(0.1),MCC为0.86(0.16)。对性能最佳的模型进行的SHAP和LIME分析突出了与MPS患者常见的牙齿表现和呼吸道感染相关的关键特征,如急性牙龈炎、牙齿赘生物、龋齿、急性咽炎、急性扁桃体炎和急性支气管炎。本研究介绍了一种使用非侵入性EHR对MPS疾病进行经济高效的筛查方法,这有助于推动罕见病早期诊断的数字筛查工具的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验