Suppr超能文献

gamUnet:设计基于全局注意力的卷积神经网络架构以增强口腔癌检测与分割

gamUnet: designing global attention-based CNN architectures for enhanced oral cancer detection and segmentation.

作者信息

Zhang Jinyang, Ding Hongxin, Zhu Runchuan, Liao Weibin, Zhao Junfeng, Gao Min, Zhang Xiaoyun

机构信息

School of Computer Science, Peking University, Beijing, China.

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking University, Beijing, China.

出版信息

Front Med (Lausanne). 2025 Jul 23;12:1582439. doi: 10.3389/fmed.2025.1582439. eCollection 2025.

Abstract

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is a significant global health burden, where timely and accurate diagnosis is essential for improved patient outcomes. Conventional diagnosis relies on manual evaluation of hematoxylin and eosin (H&E)-stained slides, a time-consuming process requiring specialized expertise and prone to variability. While deep learning methods, especially convolutional neural networks (CNNs), have advanced automated analysis of histopathological images for cancerous tissues in various body parts, OSCC presents unique challenges. Its infiltrative growth patterns and poorly defined boundaries, coupled with the complex architecture of the oral cavity, make accurate segmentation particularly difficult. Traditional CNNs which sturggle to capture critical global contextual information often fail to distinguish the complex tissue structures in OSCC images.

METHODS

To address these challenges, we propose a novel architecture called , which integrates the Global Attention Mechanism (GAM) to enhance the model's ability to capture global cross-modal information. This allows the model to focus on key diagnostic regions while retaining detailed spatial information. Additionally, we introduce an extended model, gamResNet, to further improve OSCC detection performance. Both architectures show significant improvements in handling the unique challenges of oral cancer images.

RESULTS

Extensive experiments on public datasets show that our GAM-enhanced architecture significantly outperforms conventional models, achieving superior accuracy, robustness, and efficiency in OSCC diagnosis.

DISCUSSION

Our approach provides an effective tool for clinicians in diagnosing OSCC, reducing diagnostic variability, and ultimately contributing to improved patient care and treatment planning.

摘要

引言

口腔鳞状细胞癌(OSCC)是一项重大的全球健康负担,及时准确的诊断对于改善患者预后至关重要。传统诊断依赖于对苏木精和伊红(H&E)染色切片的人工评估,这是一个耗时的过程,需要专业知识,且容易出现变异性。虽然深度学习方法,尤其是卷积神经网络(CNN),已经推动了对身体各部位癌组织的组织病理学图像进行自动化分析,但OSCC带来了独特的挑战。其浸润性生长模式和边界不清晰,再加上口腔复杂的结构,使得准确分割尤为困难。传统的CNN难以捕捉关键的全局上下文信息,常常无法区分OSCC图像中的复杂组织结构。

方法

为应对这些挑战,我们提出了一种名为 的新型架构,该架构集成了全局注意力机制(GAM),以增强模型捕捉全局跨模态信息的能力。这使模型能够专注于关键诊断区域,同时保留详细的空间信息。此外,我们引入了一个扩展模型gamResNet,以进一步提高OSCC检测性能。两种架构在处理口腔癌图像的独特挑战方面都有显著改进。

结果

在公共数据集上进行的大量实验表明,我们的GAM增强架构明显优于传统模型,在OSCC诊断中实现了更高的准确性、鲁棒性和效率。

讨论

我们的方法为临床医生诊断OSCC提供了一种有效的工具,减少了诊断变异性,并最终有助于改善患者护理和治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8e/12325238/9d1beee2599f/fmed-12-1582439-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验