Suppr超能文献

让机器学习对临床医生产生重要影响:医学决策中的模型可操作性。

Making machine learning matter to clinicians: model actionability in medical decision-making.

作者信息

Ehrmann Daniel E, Joshi Shalmali, Goodfellow Sebastian D, Mazwi Mjaye L, Eytan Danny

机构信息

Department of Critical Care Medicine and Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, Canada.

Congenital Heart Center at Mott Children's Hospital and the University of Michigan Medical School, Ann Arbor, MI, USA.

出版信息

NPJ Digit Med. 2023 Jan 24;6(1):7. doi: 10.1038/s41746-023-00753-7.

Abstract

Machine learning (ML) has the potential to transform patient care and outcomes. However, there are important differences between measuring the performance of ML models in silico and usefulness at the point of care. One lens to use to evaluate models during early development is actionability, which is currently undervalued. We propose a metric for actionability intended to be used before the evaluation of calibration and ultimately decision curve analysis and calculation of net benefit. Our metric should be viewed as part of an overarching effort to increase the number of pragmatic tools that identify a model's possible clinical impacts.

摘要

机器学习(ML)有潜力改变患者护理和治疗结果。然而,在计算机模拟中衡量ML模型的性能与在临床护理点的实用性之间存在重要差异。在早期开发过程中用于评估模型的一个视角是可操作性,而目前它被低估了。我们提出了一种可操作性指标,旨在在校准评估之前使用,最终用于决策曲线分析和净效益计算。我们的指标应被视为提高识别模型可能临床影响的实用工具数量这一总体努力的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a0e/9871014/d1032e34487e/41746_2023_753_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验