文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

虚拟现实中对情绪刺激的高伽马脑电反应:来自局部激活和分布式特征的见解

High gamma EEG responses to emotional stimuli in virtual reality: insights from local activation and distributed characteristics.

作者信息

Xiao Shasha, Youssef Nadia, Zhang Qingxun, Lin Xiaoqian, Qiu Ziquan, Liu Wenjie, Meng Xianglian, Yu Minchang

机构信息

School of Computer Science and Information Engineering, Changzhou Institute of Technology, Changzhou, China.

Knowlepsy, Marseille, Provence-Alpes-Côte d'Azur, France.

出版信息

Front Hum Neurosci. 2025 Jul 23;19:1623331. doi: 10.3389/fnhum.2025.1623331. eCollection 2025.


DOI:10.3389/fnhum.2025.1623331
PMID:40772244
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12325198/
Abstract

INTRODUCTION: High frequency electroencephalogram (EEG) activity, particularly in the high gamma range, plays an important role in research on human emotions. However, the current understanding of high gamma EEG responses to emotional stimuli in virtual reality (VR) remains limited, especially regarding local activations and distributed network characteristics during different emotional states. METHODS: In this study, EEG responses to positive and negative VR stimuli were analyzed. EEG data were recorded from 19 participants as they viewed 4-second VR videos designed to elicit positive and negative responses. Two neural signatures were examined: high gamma band (53-80 Hz) spectral power and brain network features (nodal/local efficiency). RESULTS AND DISCUSSION: Spectral power analysis revealed valence-specific spatial patterns in spectral power, with significantly higher frontal gamma activity during positive states and increased right temporal gamma power during negative states. Network analysis revealed elevated local efficiency during positive emotions, indicating enhanced modular connectivity. Machine learning classification demonstrated higher accuracy for spectral power features (73.57% ± 2.30%) compared to nodal efficiency (69.51% ± 2.62%) and local efficiency (65.03% ± 1.33%), with key discriminators identified in frontal, temporal, and occipital regions. These findings suggest that localized high gamma activity provides more direct discriminative information for emotion recognition in VR than network topology metrics, advancing the understanding of neurophysiological responses in immersive VR environments.

摘要

引言:高频脑电图(EEG)活动,尤其是在高伽马频段,在人类情绪研究中起着重要作用。然而,目前对于虚拟现实(VR)中情绪刺激的高伽马脑电反应的理解仍然有限,特别是关于不同情绪状态下的局部激活和分布式网络特征。 方法:在本研究中,分析了对正负VR刺激的脑电反应。记录了19名参与者在观看旨在引发正负反应的4秒VR视频时的脑电数据。检查了两个神经特征:高伽马频段(53 - 80 Hz)的频谱功率和脑网络特征(节点/局部效率)。 结果与讨论:频谱功率分析揭示了频谱功率中特定效价的空间模式,积极状态下额叶伽马活动显著更高,消极状态下右侧颞叶伽马功率增加。网络分析显示积极情绪期间局部效率升高,表明模块化连接增强。机器学习分类表明,与节点效率(69.51% ± 2.62%)和局部效率(65.03% ± 1.33%)相比,频谱功率特征的准确率更高(73.57% ± 2.30%),在额叶、颞叶和枕叶区域识别出关键判别因素。这些发现表明,与网络拓扑指标相比,局部高伽马活动为VR中的情绪识别提供了更直接的判别信息,推进了对沉浸式VR环境中神经生理反应的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/49b402c66f1d/fnhum-19-1623331-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/69da66e1fb9b/fnhum-19-1623331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/4c2bbb4ee417/fnhum-19-1623331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/66119b616bed/fnhum-19-1623331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/565c30a5dfb5/fnhum-19-1623331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/f2c690f12ba7/fnhum-19-1623331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/c82b2e864b50/fnhum-19-1623331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/91d47a550a65/fnhum-19-1623331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/4a618a455a70/fnhum-19-1623331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/949b8c0e848f/fnhum-19-1623331-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/f508773b1602/fnhum-19-1623331-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/403ac9fcba73/fnhum-19-1623331-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/49b402c66f1d/fnhum-19-1623331-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/69da66e1fb9b/fnhum-19-1623331-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/4c2bbb4ee417/fnhum-19-1623331-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/66119b616bed/fnhum-19-1623331-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/565c30a5dfb5/fnhum-19-1623331-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/f2c690f12ba7/fnhum-19-1623331-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/c82b2e864b50/fnhum-19-1623331-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/91d47a550a65/fnhum-19-1623331-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/4a618a455a70/fnhum-19-1623331-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/949b8c0e848f/fnhum-19-1623331-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/f508773b1602/fnhum-19-1623331-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/403ac9fcba73/fnhum-19-1623331-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471e/12325198/49b402c66f1d/fnhum-19-1623331-g012.jpg

相似文献

[1]
High gamma EEG responses to emotional stimuli in virtual reality: insights from local activation and distributed characteristics.

Front Hum Neurosci. 2025-7-23

[2]
Graph theory-based analysis of functional connectivity changes in brain networks underlying cognitive fatigue: An EEG study.

PLoS One. 2025-8-4

[3]
Heart rate and EEG gamma band connectivity in the ventral attention network during emotional movie stimulation in women with high emotion dysregulation.

Front Neurosci. 2025-6-25

[4]
Short-Term Memory Impairment

2025-1

[5]
Investigating Gamma Frequency Band PSD in Alzheimer's Disease Using qEEG from Eyes-Open and Eyes-Closed Resting States.

J Clin Med. 2025-6-15

[6]
Neurological Evidence of Diverse Self-Help Breathing Training With Virtual Reality and Biofeedback Assistance: Extensive Exploration Study of Electroencephalography Markers.

JMIR Form Res. 2024-12-6

[7]
Modulation of Cerebellar Oscillations with Subthalamic Stimulation in Patients with Parkinson's Disease.

J Parkinsons Dis. 2024

[8]
The Effects of Virtual Reality on Hope and Travel Expectations in Healthy and Hospitalized Children: Quasi-Experimental Design Approach.

Interact J Med Res. 2025-6-16

[9]
Using Pupillometry in Virtual Reality as a Tool for Speech-in-Noise Research.

Ear Hear. 2025-7-2

[10]
EEG spectral power correlates across cognitive tasks: Implications for VR, UXA, and Ergonomics.

Biol Psychol. 2025-7-23

本文引用的文献

[1]
Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition.

Front Neurorobot. 2025-1-7

[2]
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?

Brain. 2024-9-3

[3]
Differential Brain Activation for Four Emotions in VR-2D and VR-3D Modes.

Brain Sci. 2024-3-28

[4]
Subject-Independent Emotion Recognition Based on EEG Frequency Band Features and Self-Adaptive Graph Construction.

Brain Sci. 2024-3-12

[5]
Should perception of emotions be classified according to threat detection rather than emotional valence? An updated meta-analysis for a whole-brain atlas of emotional faces processing.

J Psychiatry Neurosci. 2023

[6]
Dynamic segregation and integration of brain functional networks associated with emotional arousal.

iScience. 2023-4-11

[7]
Neural Applications Using Immersive Virtual Reality: A Review on EEG Studies.

IEEE Trans Neural Syst Rehabil Eng. 2023

[8]
Evaluating the Alterations Induced by Virtual Reality in Cerebral Small-World Networks Using Graph Theory Analysis with Electroencephalography.

Brain Sci. 2022-11-28

[9]
Emotional states as distinct configurations of functional brain networks.

Cereb Cortex. 2023-4-25

[10]
Dorsolateral Prefrontal Activation in Emotional Autobiographical Task in Depressed and Anxious College Students: An fNIRS Study.

Int J Environ Res Public Health. 2022-11-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索