Liu Jiyao, He Lang, Chen Haifeng, Jiang Dongmei
School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, China.
Front Neurorobot. 2025 Jan 7;18:1481746. doi: 10.3389/fnbot.2024.1481746. eCollection 2024.
Significant strides have been made in emotion recognition from Electroencephalography (EEG) signals. However, effectively modeling the diverse spatial, spectral, and temporal features of multi-channel brain signals remains a challenge. This paper proposes a novel framework, the Directional Spatial and Spectral Attention Network (DSSA Net), which enhances emotion recognition accuracy by capturing critical spatial-spectral-temporal features from EEG signals. The framework consists of three modules: Positional Attention (PA), Spectral Attention (SA), and Temporal Attention (TA). The PA module includes Vertical Attention (VA) and Horizontal Attention (HA) branches, designed to detect active brain regions from different orientations. Experimental results on three benchmark EEG datasets demonstrate that DSSA Net outperforms most competitive methods. On the SEED and SEED-IV datasets, it achieves accuracies of 96.61% and 85.07% for subject-dependent emotion recognition, respectively, and 87.03% and 75.86% for subject-independent recognition. On the DEAP dataset, it attains accuracies of 94.97% for valence and 94.73% for arousal. These results showcase the framework's ability to leverage both spatial and spectral differences across brain hemispheres and regions, enhancing classification accuracy for emotion recognition.
在基于脑电图(EEG)信号的情感识别方面已经取得了重大进展。然而,有效地对多通道脑信号的各种空间、频谱和时间特征进行建模仍然是一个挑战。本文提出了一种新颖的框架——定向空间和频谱注意力网络(DSSA Net),它通过捕捉EEG信号的关键空间 - 频谱 - 时间特征来提高情感识别准确率。该框架由三个模块组成:位置注意力(PA)、频谱注意力(SA)和时间注意力(TA)。PA模块包括垂直注意力(VA)和水平注意力(HA)分支,旨在从不同方向检测活跃的脑区。在三个基准EEG数据集上的实验结果表明,DSSA Net优于大多数有竞争力的方法。在SEED和SEED - IV数据集上,对于依赖于个体的情感识别,其准确率分别达到96.61%和85.07%,对于不依赖于个体的识别,准确率分别为87.03%和75.86%。在DEAP数据集上,其效价准确率达到94.97%,唤醒准确率达到94.73%。这些结果展示了该框架利用大脑半球和区域之间的空间和频谱差异来提高情感识别分类准确率的能力。