Suppr超能文献

从少量数据中学习:通过深度学习从视网膜图像中分类性别。

Learning from small data: Classifying sex from retinal images via deep learning.

机构信息

Department of Mathematics & Statistics, McGill University, Montréal, Canada.

Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.

出版信息

PLoS One. 2023 Aug 3;18(8):e0289211. doi: 10.1371/journal.pone.0289211. eCollection 2023.

Abstract

Deep learning (DL) techniques have seen tremendous interest in medical imaging, particularly in the use of convolutional neural networks (CNNs) for the development of automated diagnostic tools. The facility of its non-invasive acquisition makes retinal fundus imaging particularly amenable to such automated approaches. Recent work in the analysis of fundus images using CNNs relies on access to massive datasets for training and validation, composed of hundreds of thousands of images. However, data residency and data privacy restrictions stymie the applicability of this approach in medical settings where patient confidentiality is a mandate. Here, we showcase results for the performance of DL on small datasets to classify patient sex from fundus images-a trait thought not to be present or quantifiable in fundus images until recently. Specifically, we fine-tune a Resnet-152 model whose last layer has been modified to a fully-connected layer for binary classification. We carried out several experiments to assess performance in the small dataset context using one private (DOVS) and one public (ODIR) data source. Our models, developed using approximately 2500 fundus images, achieved test AUC scores of up to 0.72 (95% CI: [0.67, 0.77]). This corresponds to a mere 25% decrease in performance despite a nearly 1000-fold decrease in the dataset size compared to prior results in the literature. Our results show that binary classification, even with a hard task such as sex categorization from retinal fundus images, is possible with very small datasets. Our domain adaptation results show that models trained with one distribution of images may generalize well to an independent external source, as in the case of models trained on DOVS and tested on ODIR. Our results also show that eliminating poor quality images may hamper training of the CNN due to reducing the already small dataset size even further. Nevertheless, using high quality images may be an important factor as evidenced by superior generalizability of results in the domain adaptation experiments. Finally, our work shows that ensembling is an important tool in maximizing performance of deep CNNs in the context of small development datasets.

摘要

深度学习(DL)技术在医学成像领域引起了极大的关注,特别是卷积神经网络(CNNs)在开发自动化诊断工具方面的应用。视网膜眼底图像的非侵入式获取方式使其特别适合这种自动化方法。最近,使用 CNN 分析眼底图像的工作依赖于大量数据集进行训练和验证,这些数据集由数十万张图像组成。然而,数据驻留和数据隐私限制阻碍了这种方法在医疗环境中的应用,因为患者的保密性是强制性的。在这里,我们展示了使用小数据集对 DL 进行分类的结果,以从眼底图像中分类患者的性别 - 直到最近,人们认为这种特征在眼底图像中不存在或不可量化。具体来说,我们对修改后的 Resnet-152 模型进行微调,该模型的最后一层已修改为用于二进制分类的全连接层。我们进行了几项实验,以使用一个私有(DOVS)和一个公共(ODIR)数据源在小数据集环境中评估性能。我们的模型使用大约 2500 张眼底图像进行开发,测试 AUC 分数高达 0.72(95%CI:[0.67, 0.77])。这与之前文献中的结果相比,性能下降了仅 25%,而数据集大小却减少了近 1000 倍。我们的结果表明,即使是从视网膜眼底图像中进行性别分类等困难任务的二进制分类,也可以使用非常小的数据集。我们的领域自适应结果表明,从一个图像分布训练的模型可能会很好地泛化到独立的外部源,就像在从 DOVS 训练并在 ODIR 测试的模型的情况下一样。我们的结果还表明,由于进一步减少已经很小的数据集大小,消除质量较差的图像可能会阻碍 CNN 的训练。然而,使用高质量的图像可能是一个重要因素,正如在领域自适应实验中结果具有更好的可推广性所证明的那样。最后,我们的工作表明,在小的开发数据集的背景下,集成是最大化深度 CNN 性能的重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验