Suppr超能文献

使用具有集成光电突触功能的HfZrO铁电薄膜晶体管的节能混合储层计算

Energy Efficient Hybrid Reservoir Computing Using HfZrO Ferroelectric Thin-Film Transistors with an Integrated Optically and Electrically Synaptic Functions.

作者信息

Lee Seungjun, An Gwangmin, Kim Doohyung, Lee Hyeonho, Kim Sungjun, Kim Tae-Hyeon

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.

Department of Semiconductor Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.

出版信息

Small. 2025 Aug;21(32):e2501276. doi: 10.1002/smll.202501276. Epub 2025 Jun 16.

Abstract

This study introduces an ultralow power hybrid reservoir computing (HRC) system employing an indium gallium zinc oxide (IGZO)/HfZrO (HZO)-based ferroelectric thin-film transistor (FeTFT) for neuromorphic applications. The proposed FeTFT system integrates volatile and nonvolatile functionalities, respectively driven by optical and electrical stimuli, to emulate short-term and long-term synaptic behaviors. Leveraging persistent photoconductivity in the IGZO channel under optical excitation, the FeTFT exhibits dynamic reservoir characteristics, while HZO-induced ferroelectric polarization enables robust long-term memory for the readout layer. Experimental results demonstrate enhanced energy efficiency with a power consumption of ≈22 pW per device and distinct separation of 4- and 5-bit reservoir states. This system achieves competitive accuracies of 90.48% and 88.23% for Modified National Institute of Standards and Technology (MNIST) and fashion MNIST datasets, respectively, surpassing state-of-the-art hardware-based implementations. By consolidating reservoir and readout layers within a single device, this study advances the scalability and feasibility of next-generation neuromorphic computing systems. Furthermore, the implementation of HRC leveraging optical and electrical pulses presents promising prospects for applications involving visual neuron functionalities.

摘要

本研究介绍了一种用于神经形态应用的超低功耗混合储层计算(HRC)系统,该系统采用基于铟镓锌氧化物(IGZO)/铪锆氧化物(HZO)的铁电薄膜晶体管(FeTFT)。所提出的FeTFT系统集成了分别由光刺激和电刺激驱动的易失性和非易失性功能,以模拟短期和长期突触行为。利用光激发下IGZO沟道中的持久光电导性,FeTFT展现出动态储层特性,而HZO诱导的铁电极化则为读出层实现了强大的长期记忆功能。实验结果表明,该系统能效得到提高,单个器件的功耗约为22皮瓦,4位和5位储层状态有明显区分。对于修改后的美国国家标准与技术研究院(MNIST)数据集和时尚MNIST数据集,该系统分别实现了90.48%和88.23%的竞争准确率,超过了基于硬件的现有技术实现。通过在单个器件中整合储层和读出层,本研究推动了下一代神经形态计算系统的可扩展性和可行性。此外,利用光脉冲和电脉冲实现的HRC为涉及视觉神经元功能的应用展现出了广阔前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验