Gao Gan, Yan Renao, Song Andrew H, Hsieh Huai-Ching, Barner Lindsey A Erion, Wang Fiona, Brenes David, Chow Sarah S L, Wang Rui, Bishop Kevin W, Liu Yongjun, Farre Xavier, Divatia Mukul, Downes Michelle R, Vakar-Lopez Funda, Lal Priti, Burke Wynn, Madabhushi Anant, True Lawrence D, Reddi Deepti M, Grady William M, Mahmood Faisal, Liu Jonathan T C
bioRxiv. 2025 Jul 22:2025.07.20.665804. doi: 10.1101/2025.07.20.665804.
Standard-of-care slide-based 2D histopathology severely undersamples spatially heterogeneous tissue specimens, with each thin 2D section representing <1% of the entire tissue volume (in the case of a biopsy). Recent advances in non-destructive 3D pathology, such as open-top light-sheet microscopy (OTLS), enable comprehensive high-resolution imaging of large clinical specimens. While fully automated computational analyses of such 3D pathology datasets are being explored, a potential low-risk route for accelerated clinical adoption would be to continue to rely upon pathologists to provide final diagnoses. Since manual review of these massive and complex 3D datasets is infeasible for routine clinical practice, we present CARP3D, a deep learning triage framework that identifies high-risk 2D cross sections within large 3D pathology datasets to enable time-efficient pathologist evaluation. CARP3D assigns risk scores to all 2D levels within a tissue volume by leveraging context from a subset of neighboring depth levels, outperforming models in which predictions are based on isolated 2D levels. In two use cases - risk stratification based on prostate cancer biopsies and screening for dysplasia/cancer in endoscopic biopsies of Barrett's esophagus - AI-triaged 3D pathology, enabled by CARP3D, demonstrates the potential to improve the detection of high-risk diseases in comparison to slide-based 2D histopathology while optimizing pathologist workloads.
基于载玻片的二维组织病理学标准护理严重低估了空间异质性组织标本,每个薄的二维切片仅代表整个组织体积的不到1%(在活检的情况下)。无损三维病理学的最新进展,如开放式光片显微镜(OTLS),能够对大型临床标本进行全面的高分辨率成像。虽然正在探索对此类三维病理学数据集进行全自动计算分析,但加速临床应用的一条潜在低风险途径是继续依靠病理学家做出最终诊断。由于对这些海量且复杂的三维数据集进行人工复查在常规临床实践中不可行,我们提出了CARP3D,这是一个深度学习分类框架,可在大型三维病理学数据集中识别高风险二维横截面,以便病理学家进行高效评估。CARP3D通过利用相邻深度层子集的上下文信息为组织体积内的所有二维层分配风险分数,优于基于孤立二维层进行预测的模型。在两个用例中——基于前列腺癌活检的风险分层以及巴雷特食管内镜活检中的发育异常/癌症筛查——由CARP3D实现的人工智能分类三维病理学与基于载玻片的二维组织病理学相比,显示出在优化病理学家工作量的同时提高高风险疾病检测能力的潜力。
JBJS Essent Surg Tech. 2025-8-15
Cochrane Database Syst Rev. 2016-3-1
Microscopy (Oxf). 2024-9-28
IEEE Trans Med Imaging. 2025-1
Nat Methods. 2024-7