文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于全面高效的病理学家评估的3D病理数据集的深度学习分类

Deep-learning triage of 3D pathology datasets for comprehensive and efficient pathologist assessments.

作者信息

Gao Gan, Yan Renao, Song Andrew H, Hsieh Huai-Ching, Barner Lindsey A Erion, Wang Fiona, Brenes David, Chow Sarah S L, Wang Rui, Bishop Kevin W, Liu Yongjun, Farre Xavier, Divatia Mukul, Downes Michelle R, Vakar-Lopez Funda, Lal Priti, Burke Wynn, Madabhushi Anant, True Lawrence D, Reddi Deepti M, Grady William M, Mahmood Faisal, Liu Jonathan T C

出版信息

bioRxiv. 2025 Jul 22:2025.07.20.665804. doi: 10.1101/2025.07.20.665804.


DOI:10.1101/2025.07.20.665804
PMID:40777412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12330501/
Abstract

Standard-of-care slide-based 2D histopathology severely undersamples spatially heterogeneous tissue specimens, with each thin 2D section representing <1% of the entire tissue volume (in the case of a biopsy). Recent advances in non-destructive 3D pathology, such as open-top light-sheet microscopy (OTLS), enable comprehensive high-resolution imaging of large clinical specimens. While fully automated computational analyses of such 3D pathology datasets are being explored, a potential low-risk route for accelerated clinical adoption would be to continue to rely upon pathologists to provide final diagnoses. Since manual review of these massive and complex 3D datasets is infeasible for routine clinical practice, we present CARP3D, a deep learning triage framework that identifies high-risk 2D cross sections within large 3D pathology datasets to enable time-efficient pathologist evaluation. CARP3D assigns risk scores to all 2D levels within a tissue volume by leveraging context from a subset of neighboring depth levels, outperforming models in which predictions are based on isolated 2D levels. In two use cases - risk stratification based on prostate cancer biopsies and screening for dysplasia/cancer in endoscopic biopsies of Barrett's esophagus - AI-triaged 3D pathology, enabled by CARP3D, demonstrates the potential to improve the detection of high-risk diseases in comparison to slide-based 2D histopathology while optimizing pathologist workloads.

摘要

基于载玻片的二维组织病理学标准护理严重低估了空间异质性组织标本,每个薄的二维切片仅代表整个组织体积的不到1%(在活检的情况下)。无损三维病理学的最新进展,如开放式光片显微镜(OTLS),能够对大型临床标本进行全面的高分辨率成像。虽然正在探索对此类三维病理学数据集进行全自动计算分析,但加速临床应用的一条潜在低风险途径是继续依靠病理学家做出最终诊断。由于对这些海量且复杂的三维数据集进行人工复查在常规临床实践中不可行,我们提出了CARP3D,这是一个深度学习分类框架,可在大型三维病理学数据集中识别高风险二维横截面,以便病理学家进行高效评估。CARP3D通过利用相邻深度层子集的上下文信息为组织体积内的所有二维层分配风险分数,优于基于孤立二维层进行预测的模型。在两个用例中——基于前列腺癌活检的风险分层以及巴雷特食管内镜活检中的发育异常/癌症筛查——由CARP3D实现的人工智能分类三维病理学与基于载玻片的二维组织病理学相比,显示出在优化病理学家工作量的同时提高高风险疾病检测能力的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/f616ae444689/nihpp-2025.07.20.665804v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/be8fbfa829e5/nihpp-2025.07.20.665804v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/7dcd9a811081/nihpp-2025.07.20.665804v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/58a913b06c90/nihpp-2025.07.20.665804v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/5ea8fb279437/nihpp-2025.07.20.665804v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/eafa8e94d683/nihpp-2025.07.20.665804v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/125920decc4b/nihpp-2025.07.20.665804v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/be68450e7783/nihpp-2025.07.20.665804v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/7dcbbb4d9e79/nihpp-2025.07.20.665804v1-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/065502a03aac/nihpp-2025.07.20.665804v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/74f1b09eac85/nihpp-2025.07.20.665804v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/2c194ed89c53/nihpp-2025.07.20.665804v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/f616ae444689/nihpp-2025.07.20.665804v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/be8fbfa829e5/nihpp-2025.07.20.665804v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/7dcd9a811081/nihpp-2025.07.20.665804v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/58a913b06c90/nihpp-2025.07.20.665804v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/5ea8fb279437/nihpp-2025.07.20.665804v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/eafa8e94d683/nihpp-2025.07.20.665804v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/125920decc4b/nihpp-2025.07.20.665804v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/be68450e7783/nihpp-2025.07.20.665804v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/7dcbbb4d9e79/nihpp-2025.07.20.665804v1-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/065502a03aac/nihpp-2025.07.20.665804v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/74f1b09eac85/nihpp-2025.07.20.665804v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/2c194ed89c53/nihpp-2025.07.20.665804v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014e/12330501/f616ae444689/nihpp-2025.07.20.665804v1-f0004.jpg

相似文献

[1]
Deep-learning triage of 3D pathology datasets for comprehensive and efficient pathologist assessments.

bioRxiv. 2025-7-22

[2]
Variation within and between digital pathology and light microscopy for the diagnosis of histopathology slides: blinded crossover comparison study.

Health Technol Assess. 2025-7

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[5]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[6]
Nondestructive 3D pathology with analysis of nuclear features for prostate cancer risk assessment.

J Pathol. 2023-8

[7]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[8]
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.

Cochrane Database Syst Rev. 2016-3-1

[9]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[10]
The agreement of phonetic transcriptions between paediatric speech and language therapists transcribing a disordered speech sample.

Int J Lang Commun Disord. 2024

本文引用的文献

[1]
Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.

Cell Rep Methods. 2025-6-16

[2]
InterpolAI: deep learning-based optical flow interpolation and restoration of biomedical images for improved 3D tissue mapping.

Nat Methods. 2025-5-28

[3]
Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining.

Nat Commun. 2025-5-22

[4]
Multimodal generative AI for medical image interpretation.

Nature. 2025-3

[5]
A vision-language foundation model for precision oncology.

Nature. 2025-2

[6]
Unlocking the potential of large-scale 3D imaging with tissue clearing techniques.

Microscopy (Oxf). 2024-9-28

[7]
A pathology foundation model for cancer diagnosis and prognosis prediction.

Nature. 2024-10

[8]
Shapley Values-Enabled Progressive Pseudo Bag Augmentation for Whole-Slide Image Classification.

IEEE Trans Med Imaging. 2025-1

[9]
Deep 3D histology powered by tissue clearing, omics and AI.

Nat Methods. 2024-7

[10]
Axially swept open-top light-sheet microscopy for densely labeled clinical specimens.

Opt Lett. 2024-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索