文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于婴儿二尖瓣的基于组织工程体外小叶和三维打印的植入物原型

Tissue Engineering In Vitro Leaflet- and 3-Dimensional Printing-Based Implant Prototypes for Infant Mitral Valve.

作者信息

González-Duque Martha I, Breuninger Arielle, Leis Frédéric, Michaud Julio B, Sivakumar Shaginth, Pautu Vincent, Jaconi Marisa E, Jobin Marc, Roux Adrien

机构信息

Tissue Engineering Laboratory, Bioengineering Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.

Tissue Engineering Group, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, D.C., Colombia.

出版信息

BME Front. 2025 Aug 7;6:0159. doi: 10.34133/bmef.0159. eCollection 2025.


DOI:10.34133/bmef.0159
PMID:40777733
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12329791/
Abstract

This study engineers leaflet- and 3-dimensional (3D) printing-based implant prototypes for infant mitral valve repair via in vitro cultured mesoangioblasts isolated from the human fetal aorta (AoMAB). Ultrahigh-molecular-weight polyethylene (UHMWPE) coatings, as well as 3D-printed gelatin methacrylate (GelMA) hydrogels for implants, represent new possibilities for devices used in mitral valve repair. Mitral valve prolapse (MVP) repair in pediatric patients is challenging due to somatic growth, patient-prosthesis mismatch, reinterventions, infections, and thromboembolism. Tissue-engineered heart valves (TEHVs) offer potential solutions through conventional and 3D printing biofabrication. Four materials are evaluated: UHMWPE, UHMWPE coated with polyvinyl alcohol (PVA), UHMWPE coated with PVA and collagen, and 3D-printed GelMA hydrogels. The prototypes are characterized for micro/nanostructural, physicochemical (degradation, contact angle, Fourier transform infrared spectroscopy), and mechanical properties (simple strength tests, dynamic mechanical analysis) and assessed for cytocompatibility using AoMAB cells. A 3D printing mitral valve prototype is analyzed via immunostaining. Results highlight UHMWPE coated with PVA and collagen as the most promising, with degradation (7.30 ± 18.71%), a hydrophilic contact angle (26.13 ± 1.45°), and biocompatibility (177.04 ± 68.92% viability). GelMA prototypes show superior viability (216.77 ± 77.69%) and scalability for 3D printing. UHMWPE coated with PVA and collagen and GelMA demonstrate strong potential for TEHVs, with AoMAB cells facilitating 3D culture and future personalized pediatric applications. Further in vitro validation and thrombogenicity assessments are needed.

摘要

本研究通过从人胎儿主动脉分离的体外培养间充质血管祖细胞(AoMAB),设计基于小叶和三维(3D)打印的植入物原型用于婴儿二尖瓣修复。超高分子量聚乙烯(UHMWPE)涂层以及用于植入物的3D打印甲基丙烯酸明胶(GelMA)水凝胶,为二尖瓣修复所用装置带来了新的可能性。由于身体生长、患者与假体不匹配、再次干预、感染和血栓栓塞,儿科患者的二尖瓣脱垂(MVP)修复具有挑战性。组织工程心脏瓣膜(TEHV)通过传统和3D打印生物制造提供了潜在的解决方案。评估了四种材料:UHMWPE、涂有聚乙烯醇(PVA)的UHMWPE、涂有PVA和胶原蛋白的UHMWPE以及3D打印的GelMA水凝胶。对原型进行微观/纳米结构、物理化学(降解、接触角、傅里叶变换红外光谱)和机械性能(简单强度测试、动态力学分析)表征,并使用AoMAB细胞评估细胞相容性。通过免疫染色分析3D打印二尖瓣原型。结果突出显示涂有PVA和胶原蛋白的UHMWPE最具前景,其降解率为(7.30±18.71%),亲水接触角为(26.13±1.45°),生物相容性为(177.04±68.92%活力)。GelMA原型显示出卓越的活力(216.77±77.69%)和3D打印的可扩展性。涂有PVA和胶原蛋白的UHMWPE以及GelMA在TEHV方面显示出强大潜力,AoMAB细胞有助于3D培养和未来个性化儿科应用。还需要进一步的体外验证和血栓形成评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/85330315efd8/bmef.0159.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/d16c2b95ce57/bmef.0159.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/55e7fe425556/bmef.0159.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/9a74719f1a81/bmef.0159.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/91456cbfb166/bmef.0159.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/b7f28d9c1708/bmef.0159.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/85330315efd8/bmef.0159.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/d16c2b95ce57/bmef.0159.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/55e7fe425556/bmef.0159.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/9a74719f1a81/bmef.0159.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/91456cbfb166/bmef.0159.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/b7f28d9c1708/bmef.0159.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef85/12329791/85330315efd8/bmef.0159.fig.006.jpg

相似文献

[1]
Tissue Engineering In Vitro Leaflet- and 3-Dimensional Printing-Based Implant Prototypes for Infant Mitral Valve.

BME Front. 2025-8-7

[2]
Integration of co-culture conditions and 3D gelatin methacryloyl hydrogels to improve human-induced pluripotent stem cells-derived cardiomyocytes maturation.

Front Bioeng Biotechnol. 2025-7-14

[3]
Printing GelMA bioinks: a strategy for buildingmodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress.

Biofabrication. 2024-3-28

[4]
Gelatin vs GelMA in alginate-based bioinks as a platform for versatile 3D bioprintable in vitro systems.

Biomater Adv. 2025-7-9

[5]
The Use of Gelatin Methacrylate (GelMA) in Cartilage Tissue Engineering: A Comprehensive Review.

Bioengineering (Basel). 2025-6-27

[6]
Development and characterization of polyvinyl alcohol/gelatin/chitosan hydrogel for tissue engineering and wound healing applications using a fish cell line model.

In Vitro Cell Dev Biol Anim. 2024-12-13

[7]
Mechanical performance of 3-dimensionally printed resins compared with conventional and milled resins for the manufacture of occlusal devices: A systematic review.

J Prosthet Dent. 2024-12

[8]
Comparison of Dimensional Accuracy and Stability of 3D-Printed, Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), and Conventional Polymethyl Methacrylate (PMMA) Denture Base Materials: An In Vitro Study.

Cureus. 2025-5-31

[9]
Clay-reinforced polyvinyl alcohol/sodium alginate /hydroxyapatite scaffolds: Quorum sensing inhibition and enhanced osteoblast attachment for bone tissue engineering.

Int J Biol Macromol. 2025-7-4

[10]
Bioprinting of GelMA-Based Hydrogels to Aid in Creation of Biomimetic 3D Models for Glioblastoma.

Micromachines (Basel). 2025-5-29

本文引用的文献

[1]
Optimizing scaffold pore size for tissue engineering: insights across various tissue types.

Front Bioeng Biotechnol. 2024-11-12

[2]
Long-term outcomes of mitral valve repair in children.

Front Cardiovasc Med. 2024-10-1

[3]
Challenges and Priorities for Children With Congenital Valvar Heart Disease: The Heart Valve Collaboratory.

JACC Adv. 2024-9-6

[4]
Sustainable biofabrication: from bioprinting to AI-driven predictive methods.

Trends Biotechnol. 2025-2

[5]
Mitral valve replacement in children: balancing durability and risk with mechanical and bioprosthetic valves.

Interdiscip Cardiovasc Thorac Surg. 2024-3-5

[6]
[Not Available].

Mater Today Bio. 2023-12-30

[7]
A review of materials used in tomographic volumetric additive manufacturing.

MRS Commun. 2023

[8]
Comparison of the potential for bioprinting of different 3D printing technologies.

Int J Bioprint. 2023-2-3

[9]
Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement.

J Mech Behav Biomed Mater. 2023-6

[10]
Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels.

Molecules. 2023-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索