González-Duque Martha I, Breuninger Arielle, Leis Frédéric, Michaud Julio B, Sivakumar Shaginth, Pautu Vincent, Jaconi Marisa E, Jobin Marc, Roux Adrien
Tissue Engineering Laboratory, Bioengineering Group, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.
Tissue Engineering Group, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, D.C., Colombia.
BME Front. 2025 Aug 7;6:0159. doi: 10.34133/bmef.0159. eCollection 2025.
This study engineers leaflet- and 3-dimensional (3D) printing-based implant prototypes for infant mitral valve repair via in vitro cultured mesoangioblasts isolated from the human fetal aorta (AoMAB). Ultrahigh-molecular-weight polyethylene (UHMWPE) coatings, as well as 3D-printed gelatin methacrylate (GelMA) hydrogels for implants, represent new possibilities for devices used in mitral valve repair. Mitral valve prolapse (MVP) repair in pediatric patients is challenging due to somatic growth, patient-prosthesis mismatch, reinterventions, infections, and thromboembolism. Tissue-engineered heart valves (TEHVs) offer potential solutions through conventional and 3D printing biofabrication. Four materials are evaluated: UHMWPE, UHMWPE coated with polyvinyl alcohol (PVA), UHMWPE coated with PVA and collagen, and 3D-printed GelMA hydrogels. The prototypes are characterized for micro/nanostructural, physicochemical (degradation, contact angle, Fourier transform infrared spectroscopy), and mechanical properties (simple strength tests, dynamic mechanical analysis) and assessed for cytocompatibility using AoMAB cells. A 3D printing mitral valve prototype is analyzed via immunostaining. Results highlight UHMWPE coated with PVA and collagen as the most promising, with degradation (7.30 ± 18.71%), a hydrophilic contact angle (26.13 ± 1.45°), and biocompatibility (177.04 ± 68.92% viability). GelMA prototypes show superior viability (216.77 ± 77.69%) and scalability for 3D printing. UHMWPE coated with PVA and collagen and GelMA demonstrate strong potential for TEHVs, with AoMAB cells facilitating 3D culture and future personalized pediatric applications. Further in vitro validation and thrombogenicity assessments are needed.
本研究通过从人胎儿主动脉分离的体外培养间充质血管祖细胞(AoMAB),设计基于小叶和三维(3D)打印的植入物原型用于婴儿二尖瓣修复。超高分子量聚乙烯(UHMWPE)涂层以及用于植入物的3D打印甲基丙烯酸明胶(GelMA)水凝胶,为二尖瓣修复所用装置带来了新的可能性。由于身体生长、患者与假体不匹配、再次干预、感染和血栓栓塞,儿科患者的二尖瓣脱垂(MVP)修复具有挑战性。组织工程心脏瓣膜(TEHV)通过传统和3D打印生物制造提供了潜在的解决方案。评估了四种材料:UHMWPE、涂有聚乙烯醇(PVA)的UHMWPE、涂有PVA和胶原蛋白的UHMWPE以及3D打印的GelMA水凝胶。对原型进行微观/纳米结构、物理化学(降解、接触角、傅里叶变换红外光谱)和机械性能(简单强度测试、动态力学分析)表征,并使用AoMAB细胞评估细胞相容性。通过免疫染色分析3D打印二尖瓣原型。结果突出显示涂有PVA和胶原蛋白的UHMWPE最具前景,其降解率为(7.30±18.71%),亲水接触角为(26.13±1.45°),生物相容性为(177.04±68.92%活力)。GelMA原型显示出卓越的活力(216.77±77.69%)和3D打印的可扩展性。涂有PVA和胶原蛋白的UHMWPE以及GelMA在TEHV方面显示出强大潜力,AoMAB细胞有助于3D培养和未来个性化儿科应用。还需要进一步的体外验证和血栓形成评估。
Bioengineering (Basel). 2025-6-27
Micromachines (Basel). 2025-5-29
Front Bioeng Biotechnol. 2024-11-12
Front Cardiovasc Med. 2024-10-1
Trends Biotechnol. 2025-2
Interdiscip Cardiovasc Thorac Surg. 2024-3-5
Mater Today Bio. 2023-12-30
Int J Bioprint. 2023-2-3
J Mech Behav Biomed Mater. 2023-6
Molecules. 2023-3-19