Bunce John A, Fernández Catalina I, Revilla-Minaya Caissa
Division of Anthropology, American Museum of Natural History, New York, NY, USA.
Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Sachsen, Germany.
R Soc Open Sci. 2025 Aug 7;12(8):250084. doi: 10.1098/rsos.250084. eCollection 2025 Aug.
Existing models of human growth provide limited insight into underlying mechanisms responsible for inter-individual and inter-population variation in children's growth trajectories. Building on general theories linking growth to metabolic rates, we develop a causal parametric model of height and weight growth incorporating a representation of human body allometry and a process-partitioned representation of ontogeny. This model permits separation of metabolic causes of growth variation, potentially influenced by nutrition and disease, from allometric factors, potentially under stronger genetic control. We estimate model parameters using a Bayesian multilevel statistical design applied to temporally dense height and weight measurements of U.S. children, and temporally sparse measurements of Indigenous Amazonian children. This facilitates a comparison of the contributions of metabolism and allometry to observed cross-cultural variation in the growth trajectories of the two populations, and permits simulation of the effects of healthcare interventions on growth. This theoretical model provides a new framework for exploring the causes of growth variation in our species, while potentially guiding the development of appropriate, and desired, healthcare interventions in societies confronting growth-related health challenges, such as malnutrition and stunting.
现有的人类生长模型对于儿童生长轨迹中个体间和群体间差异的潜在机制的洞察有限。基于将生长与代谢率联系起来的一般理论,我们开发了一个身高和体重增长的因果参数模型,该模型纳入了人体异速生长的表示以及个体发育的过程划分表示。该模型允许将可能受营养和疾病影响的生长变异的代谢原因与可能受更强遗传控制的异速生长因素分开。我们使用贝叶斯多级统计设计估计模型参数,该设计应用于美国儿童的时间密集型身高和体重测量以及亚马逊原住民儿童的时间稀疏测量。这有助于比较代谢和异速生长对观察到的两个群体生长轨迹中跨文化差异的贡献,并允许模拟医疗保健干预对生长的影响。这个理论模型为探索我们物种生长变异的原因提供了一个新框架,同时可能指导在面临与生长相关的健康挑战(如营养不良和发育迟缓)的社会中开发适当且理想的医疗保健干预措施。