文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁热疗的吡咯功能化磁性生物炭(PFMB)的结构、磁性及加热能力

Structure, magnetism and heating ability of pyrrole-functionalized magnetic biochar (PFMB) for magnetic hyperthermia.

作者信息

Lemine O M, Bououdina M, Altoub Turki, Alshammari M, Museery Kadi Y, Alanzi Ali Z, Latrous Latifa

机构信息

Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU) Riyadh 11623 Saudi Arabia

Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University 11586 Riyadh Saudi Arabia.

出版信息

RSC Adv. 2025 Aug 7;15(34):28145-28154. doi: 10.1039/d5ra04120a. eCollection 2025 Aug 1.


DOI:10.1039/d5ra04120a
PMID:40778103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12330208/
Abstract

This work reports the synthesis, characterization, and magnetic hyperthermia performance of pyrrole-functionalized magnetic biochar (PFMB) nanocomposites prepared a hydrothermal method. The PFMB system comprises FeO nanoparticles embedded in a biochar matrix and coated with pyrrole to improve colloidal stability and heating efficiency. Structural and morphological analyses (XRD, FTIR, SEM/EDAX) confirmed the formation of a magnetite phase and successful surface functionalization. Magnetic measurements reveal a transition from ferrimagnetic behavior in bare MB to superparamagnetism in PFMB, with saturation magnetization reduced significantly from 58.8 to 20.8 emu g. Magnetic hyperthermia experiments under alternating magnetic fields (AMF) manifest enhanced heating efficiency for PFMB, with sample absorption rate (SAR) values varying considerably from 24.27 to 53.77 W g, compared to 12.34-31.80 W g for MB. The results indicate that at higher frequencies (332 kHz and 469 kHz), both MNPs reach the therapeutic hyperthermia threshold of 42 °C in a relatively short time. The heating performance correlates well with both frequency and field amplitude. Intrinsic loss power (ILP) values for PFMB reach 0.70 nH m kg, aligning with the values reported for established polymer-coated MNPs. These results demonstrate the potential of PFMB nanocomposites as efficient and stable candidates for magnetic hyperthermia applications.

摘要

本研究报告了通过水热法制备的吡咯功能化磁性生物炭(PFMB)纳米复合材料的合成、表征及磁热性能。PFMB体系由嵌入生物炭基质并包覆吡咯的FeO纳米颗粒组成,以提高胶体稳定性和加热效率。结构和形态分析(XRD、FTIR、SEM/EDAX)证实了磁铁矿相的形成及表面功能化的成功。磁性测量表明,从裸MB中的亚铁磁性行为转变为PFMB中的超顺磁性,饱和磁化强度从58.8 emu g显著降低至20.8 emu g。交变磁场(AMF)下的磁热实验表明PFMB的加热效率提高,样品吸收率(SAR)值在24.27至53.77 W g之间变化很大,而MB的SAR值为12.34 - 31.80 W g。结果表明,在较高频率(332 kHz和469 kHz)下,两种磁性纳米颗粒均能在相对较短的时间内达到42°C的治疗性热疗阈值。加热性能与频率和场强均有良好的相关性。PFMB的固有损耗功率(ILP)值达到0.70 nH m kg,与已报道的聚合物包覆磁性纳米颗粒的值一致。这些结果证明了PFMB纳米复合材料作为磁热疗应用中高效且稳定候选材料的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/df3a8ddb511b/d5ra04120a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/7b6fdc683975/d5ra04120a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/859a42d77a13/d5ra04120a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/29672e85f831/d5ra04120a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/e180b161fa19/d5ra04120a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/bd8de427341a/d5ra04120a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/3b9f86cfadaa/d5ra04120a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/e743c8f22bc9/d5ra04120a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/fdc4ff9f69b5/d5ra04120a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/df3a8ddb511b/d5ra04120a-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/7b6fdc683975/d5ra04120a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/859a42d77a13/d5ra04120a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/29672e85f831/d5ra04120a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/e180b161fa19/d5ra04120a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/bd8de427341a/d5ra04120a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/3b9f86cfadaa/d5ra04120a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/e743c8f22bc9/d5ra04120a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/fdc4ff9f69b5/d5ra04120a-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bfb/12330208/df3a8ddb511b/d5ra04120a-f9.jpg

相似文献

[1]
Structure, magnetism and heating ability of pyrrole-functionalized magnetic biochar (PFMB) for magnetic hyperthermia.

RSC Adv. 2025-8-7

[2]
From Structure to Function: Zn/Mn-Modified Maghemite as an Advanced Nanoplatform for Magnetic Hyperthermia and Radionuclide Therapy.

ACS Appl Mater Interfaces. 2025-8-20

[3]
Design and performance evaluation of magnetic hyperthermia instrument with embedded PI control.

Electromagn Biol Med. 2025-6-29

[4]
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.

IEEE J Transl Eng Health Med. 2025-4-10

[5]
Influence of the pH Synthesis of FeO Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis.

Pharmaceutics. 2025-6-27

[6]
Multifunctional FeO mesocrystals for cancer therapy: integrating hyperthermia and targeted drug delivery.

J Mater Chem B. 2025-8-27

[7]
Precision-Engineered Cobalt-doped Iron Oxide Nanoparticles: From Octahedron Seeds to Cubical Bipyramids for Enhanced Magnetic Hyperthermia.

Adv Funct Mater. 2025-3-17

[8]
Correction: Structure, magnetism and heating ability of pyrrole-functionalized magnetic biochar (PFMB) for magnetic hyperthermia.

RSC Adv. 2025-9-1

[9]
Molecular Design of Catechol-Containing Phospholipid Polymers toward Effective Functionalization of Magnetic Nanoparticles for Cancer Hyperthermia.

ACS Omega. 2025-7-11

[10]
Nanoscale Engineering of Cobalt-Gallium Co-Doped Ferrites: A Strategy to Enhance High-Frequency Theranostic Magnetic Materials.

ACS Appl Nano Mater. 2025-7-2

本文引用的文献

[1]
Electrochemical sensing of caffeic acid on natural biomass-pyrrole-functionalized magnetic biochar (PFMB) as promising SPE material.

Mikrochim Acta. 2025-3-18

[2]
Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia.

RSC Adv. 2024-5-14

[3]
Synthesis and characterization of a novel magnetic chitosan-nickel ferrite nanocomposite for antibacterial and antioxidant properties.

Sci Rep. 2023-9-22

[4]
Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles.

Sci Rep. 2023-5-15

[5]
Radio frequency plasma assisted surface modification of FeO nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications.

J Mater Sci Mater Med. 2021-8-25

[6]
Polypyrrole-Coated Magnetite Vortex Nanoring for Hyperthermia-Boosted Photothermal/Magnetothermal Tumor Ablation Under Photoacoustic/Magnetic Resonance Guidance.

Front Bioeng Biotechnol. 2021-7-30

[7]
Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties.

Polymers (Basel). 2017-12-22

[8]
Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications.

Phys Chem Chem Phys. 2016-8-3

[9]
Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours.

J Photochem Photobiol B. 2016-7

[10]
Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior.

Sci Rep. 2015-7-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索