文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

涂覆有具有热疗特性的热敏聚合物的磁性纳米颗粒。

Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties.

作者信息

Reyes-Ortega Felisa, Delgado Ángel V, Schneider Elena K, Checa Fernández B L, Iglesias G R

机构信息

Department of Applied Physics, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University, Parkville, Victoria 3052, Australia.

出版信息

Polymers (Basel). 2017 Dec 22;10(1):10. doi: 10.3390/polym10010010.


DOI:10.3390/polym10010010
PMID:30966044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6415002/
Abstract

Magnetic nanoparticles (MNPs) have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by the enhanced permeability and retention effect. Their incorporation into biopolymer coatings enables the preparation of magnetic field-responsive, biocompatible nanoparticles that are well dispersed in aqueous media. Here we describe a synthetic route to prepare functionalized, stable magnetite nanoparticles (MNPs) coated with a temperature-responsive polymer, by means of the hydrothermal method combined with an oil/water (o/w) emulsion process. The effects of both pH and temperature on the electrophoretic mobility and surface charge of these MNPs are investigated. The magnetite/polymer composition of these systems is detected by Fourier Transform Infrared Spectroscopy (FTIR) and quantified by thermogravimetric analysis. The therapeutic possibilities of the designed nanostructures as effective heating agents for magnetic hyperthermia are demonstrated, and specific absorption rates as high as 150 W/g, with 20 mT magnetic field and 205 kHz frequency, are obtained. This magnetic heating response could provide a promising nanoparticle system for combined diagnostics and cancer therapy.

摘要

磁性纳米颗粒(MNPs)已被广泛用于提高化疗药物的疗效,主要是通过增强渗透和滞留效应实现的被动积累。将它们掺入生物聚合物涂层中,可以制备出在水性介质中分散良好的磁场响应性、生物相容性纳米颗粒。在此,我们描述了一种合成路线,通过水热法结合油/水(o/w)乳液工艺,制备涂覆有温度响应聚合物的功能化、稳定的磁铁矿纳米颗粒(MNPs)。研究了pH值和温度对这些MNPs的电泳迁移率和表面电荷的影响。通过傅里叶变换红外光谱(FTIR)检测这些体系的磁铁矿/聚合物组成,并通过热重分析进行定量。展示了所设计的纳米结构作为磁热疗有效加热剂的治疗潜力,在20 mT磁场和205 kHz频率下,获得了高达150 W/g的比吸收率。这种磁热响应可为联合诊断和癌症治疗提供一个有前景的纳米颗粒系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/ce7636cc2c28/polymers-10-00010-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/832fc6b0bbd5/polymers-10-00010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/9269439d68f1/polymers-10-00010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/be2b6bfbf9fa/polymers-10-00010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/079df8ae0c42/polymers-10-00010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/376d297f987d/polymers-10-00010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/2f754f445cab/polymers-10-00010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/ff50f4533475/polymers-10-00010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/0559de9db350/polymers-10-00010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/c8abe4b95368/polymers-10-00010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/68a80518ab5f/polymers-10-00010-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/b2449d19ee03/polymers-10-00010-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/7fd3b4457880/polymers-10-00010-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/ce7636cc2c28/polymers-10-00010-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/832fc6b0bbd5/polymers-10-00010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/9269439d68f1/polymers-10-00010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/be2b6bfbf9fa/polymers-10-00010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/079df8ae0c42/polymers-10-00010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/376d297f987d/polymers-10-00010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/2f754f445cab/polymers-10-00010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/ff50f4533475/polymers-10-00010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/0559de9db350/polymers-10-00010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/c8abe4b95368/polymers-10-00010-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/68a80518ab5f/polymers-10-00010-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/b2449d19ee03/polymers-10-00010-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/7fd3b4457880/polymers-10-00010-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2563/6415002/ce7636cc2c28/polymers-10-00010-g013.jpg

相似文献

[1]
Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties.

Polymers (Basel). 2017-12-22

[2]
Tc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent.

Mater Sci Eng C Mater Biol Appl. 2019-4-13

[3]
Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics.

Nanoscale. 2023-4-27

[4]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[5]
Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells.

Colloids Surf B Biointerfaces. 2014-10-1

[6]
Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application.

J Biol Phys. 2022-12

[7]
Hyperthermia-Triggered Doxorubicin Release from Polymer-Coated Magnetic Nanorods.

Pharmaceutics. 2019-10-8

[8]
Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.

J Colloid Interface Sci. 2016-4-1

[9]
Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

Dalton Trans. 2013-1-28

[10]
Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-2-18

引用本文的文献

[1]
Structure, magnetism and heating ability of pyrrole-functionalized magnetic biochar (PFMB) for magnetic hyperthermia.

RSC Adv. 2025-8-7

[2]
Magnetic Polymeric Conduits in Biomedical Applications.

Micromachines (Basel). 2025-1-31

[3]
Facile Synthesis of Thermoresponsive Alternating Copolymers with Tunable Phase-Transition Temperatures.

Polymers (Basel). 2024-12-12

[4]
Surface Modification Strategies for Chrysin-Loaded Iron Oxide Nanoparticles to Boost Their Anti-Tumor Efficacy in Human Colon Carcinoma Cells.

J Funct Biomater. 2024-2-13

[5]
How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2023

[6]
Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy.

Pharmaceutics. 2023-1-14

[7]
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment.

Pharmaceutics. 2022-11-18

[8]
Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies.

Micromachines (Basel). 2022-8-8

[9]
Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications.

Heliyon. 2022-6-6

[10]
Radio frequency plasma assisted surface modification of FeO nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications.

J Mater Sci Mater Med. 2021-8-25

本文引用的文献

[1]
Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications.

Nanoscale. 2016-6-16

[2]
Iron/Magnetite Nanoparticles as Magnetic Delivery Systems for Antitumor Drugs.

J Nanosci Nanotechnol. 2015-5

[3]
Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin.

Nanotechnol Sci Appl. 2012-2-7

[4]
Cationic antimicrobial polymers and their assemblies.

Int J Mol Sci. 2013-5-10

[5]
Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems.

Eur J Pharm Biopharm. 2013-1-16

[6]
Inorganic nanosystems for therapeutic delivery: status and prospects.

Adv Drug Deliv Rev. 2012-9-4

[7]
Synthesis of methacrylate monomers with antibacterial effects against S. mutans.

Molecules. 2011-11-23

[8]
Cancer hyperthermia using magnetic nanoparticles.

Biotechnol J. 2011-8-26

[9]
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

Adv Colloid Interface Sci. 2011-4-30

[10]
Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery.

Biomacromolecules. 2010-12-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索