Suppr超能文献

精密工程钴掺杂氧化铁纳米颗粒:从八面体种子到立方双锥体用于增强磁热疗

Precision-Engineered Cobalt-doped Iron Oxide Nanoparticles: From Octahedron Seeds to Cubical Bipyramids for Enhanced Magnetic Hyperthermia.

作者信息

Singh Prem, Duraisamy Karthickraja, Raitmayr Constanze, Sharma Kongbrailatpam Shitaljit, Korzun Tetiana, Singh Khushal, Moses Abraham S, Yamada Kentaro, Grigoriev Vladislav, Demessie Ananiya A, Park Youngrong, Goo Yoon Tae, Mamnoon Babak, Souza Ana Paula Mesquita, Michimoto Kenkichi, Farsad Khashayar, Jaiswal Amit, Taratula Olena R, Taratula Oleh

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA.

School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India.

出版信息

Adv Funct Mater. 2025 Mar 17. doi: 10.1002/adfm.202414719.

Abstract

Despite notable advancements, the significantly improved yet suboptimal heating efficiency of current magnetic nanoparticles hinders the effectiveness of systemically delivered magnetic hyperthermia in reducing tumor size or halting growth. Addressing this challenge, the seed-and-growth thermal decomposition method has been developed to synthesize cobalt-doped iron oxide nanoparticles featuring a cubical bipyramid morphology and consisting of both magnetite and maghemite phases within their nanostructure. They possess an exceptional specific absorption rate of 14,686 ± 396 W g Fe, inducing a temperature rise of 3.73°C per second when subjected to an alternating magnetic field (315 kHz; 26.8 kA m). The cubical bipyramid-shaped nanoparticles, functionalized with a cancer-targeting LHRH peptide, efficiently accumulate in ovarian cancer xenografts following an intravenous injection at a relatively low dose of 4 mg kg, elevating intratumoral temperatures beyond 50°C with a highly efficient heating rate. In contrast to previously reported magnetic nanoparticles with ultrahigh heating efficiency, the developed cubical bipyramid-shaped nanoparticles effectively halt ovarian cancer tumor growth after a single 30-minute session of magnetic hyperthermia. These outcomes underscore the profound potential of shape-dependent magnetic hyperthermia, where the unique cubical bipyramid morphology significantly enhances the heating efficiency and therapeutic efficacy of magnetic nanoparticles, revolutionizing the design of magnetic nanomaterials and significantly improving the effectiveness of hyperthermia-based cancer treatments.

摘要

尽管取得了显著进展,但目前磁性纳米颗粒的加热效率虽有显著提高但仍未达到最佳状态,这阻碍了全身递送磁热疗在减小肿瘤大小或阻止肿瘤生长方面的有效性。为应对这一挑战,已开发出种子生长热分解法来合成具有立方双锥体形态且纳米结构内同时包含磁铁矿和磁赤铁矿相的钴掺杂氧化铁纳米颗粒。它们具有14,686±396 W g Fe的出色比吸收率,在交变磁场(315 kHz;26.8 kA m)作用下每秒温度升高3.73°C。用靶向癌症的促黄体生成素释放激素(LHRH)肽功能化的立方双锥体形状的纳米颗粒,在以4 mg kg的相对低剂量静脉注射后,能有效地在卵巢癌异种移植瘤中积累,以高效的加热速率将肿瘤内温度升高到50°C以上。与先前报道的具有超高加热效率的磁性纳米颗粒相比,所开发的立方双锥体形状的纳米颗粒在单次30分钟的磁热疗后能有效阻止卵巢癌肿瘤生长。这些结果强调了形状依赖性磁热疗的巨大潜力,其中独特的立方双锥体形态显著提高了磁性纳米颗粒的加热效率和治疗效果,彻底改变了磁性纳米材料的设计,并显著提高了基于热疗的癌症治疗的有效性。

相似文献

3
From Structure to Function: Zn/Mn-Modified Maghemite as an Advanced Nanoplatform for Magnetic Hyperthermia and Radionuclide Therapy.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):46836-46849. doi: 10.1021/acsami.5c12439. Epub 2025 Aug 10.
4
Design and performance evaluation of magnetic hyperthermia instrument with embedded PI control.
Electromagn Biol Med. 2025 Jun 29:1-15. doi: 10.1080/15368378.2025.2524547.
5
Structure, magnetism and heating ability of pyrrole-functionalized magnetic biochar (PFMB) for magnetic hyperthermia.
RSC Adv. 2025 Aug 7;15(34):28145-28154. doi: 10.1039/d5ra04120a. eCollection 2025 Aug 1.
7
Nanoscale Engineering of Cobalt-Gallium Co-Doped Ferrites: A Strategy to Enhance High-Frequency Theranostic Magnetic Materials.
ACS Appl Nano Mater. 2025 Jul 2;8(27):13817-13828. doi: 10.1021/acsanm.5c02139. eCollection 2025 Jul 11.
10

本文引用的文献

1
Cobalt Ferrite Nanorods Synthesized with a Facile "Green" Method in a Magnetic Field.
Nanomaterials (Basel). 2024 Mar 20;14(6):541. doi: 10.3390/nano14060541.
2
Influence of size, volume concentration and aggregation state on magnetic nanoparticle hyperthermia properties excitation conditions.
Nanoscale Adv. 2024 Feb 14;6(6):1739-1749. doi: 10.1039/d3na00709j. eCollection 2024 Mar 12.
3
Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.
Nanoscale Adv. 2023 Oct 4;5(21):5859-5869. doi: 10.1039/d3na00540b. eCollection 2023 Oct 24.
4
Targeted Nanocarriers for Systemic Delivery of IRAK4 Inhibitors to Inflamed Tissues.
Small. 2024 Jan;20(4):e2306270. doi: 10.1002/smll.202306270. Epub 2023 Sep 13.
5
Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.
ACS Omega. 2023 Mar 30;8(14):12955-12967. doi: 10.1021/acsomega.2c05962. eCollection 2023 Apr 11.
6
Low-Temperature Toluene Oxidation on Fe-Containing Modified SBA-15 Materials.
Molecules. 2022 Dec 26;28(1):204. doi: 10.3390/molecules28010204.
9
Coupled hard-soft spinel ferrite-based core-shell nanoarchitectures: magnetic properties and heating abilities.
Nanoscale Adv. 2020 May 6;2(8):3191-3201. doi: 10.1039/d0na00134a. eCollection 2020 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验