Singh Prem, Duraisamy Karthickraja, Raitmayr Constanze, Sharma Kongbrailatpam Shitaljit, Korzun Tetiana, Singh Khushal, Moses Abraham S, Yamada Kentaro, Grigoriev Vladislav, Demessie Ananiya A, Park Youngrong, Goo Yoon Tae, Mamnoon Babak, Souza Ana Paula Mesquita, Michimoto Kenkichi, Farsad Khashayar, Jaiswal Amit, Taratula Olena R, Taratula Oleh
Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA.
School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India.
Adv Funct Mater. 2025 Mar 17. doi: 10.1002/adfm.202414719.
Despite notable advancements, the significantly improved yet suboptimal heating efficiency of current magnetic nanoparticles hinders the effectiveness of systemically delivered magnetic hyperthermia in reducing tumor size or halting growth. Addressing this challenge, the seed-and-growth thermal decomposition method has been developed to synthesize cobalt-doped iron oxide nanoparticles featuring a cubical bipyramid morphology and consisting of both magnetite and maghemite phases within their nanostructure. They possess an exceptional specific absorption rate of 14,686 ± 396 W g Fe, inducing a temperature rise of 3.73°C per second when subjected to an alternating magnetic field (315 kHz; 26.8 kA m). The cubical bipyramid-shaped nanoparticles, functionalized with a cancer-targeting LHRH peptide, efficiently accumulate in ovarian cancer xenografts following an intravenous injection at a relatively low dose of 4 mg kg, elevating intratumoral temperatures beyond 50°C with a highly efficient heating rate. In contrast to previously reported magnetic nanoparticles with ultrahigh heating efficiency, the developed cubical bipyramid-shaped nanoparticles effectively halt ovarian cancer tumor growth after a single 30-minute session of magnetic hyperthermia. These outcomes underscore the profound potential of shape-dependent magnetic hyperthermia, where the unique cubical bipyramid morphology significantly enhances the heating efficiency and therapeutic efficacy of magnetic nanoparticles, revolutionizing the design of magnetic nanomaterials and significantly improving the effectiveness of hyperthermia-based cancer treatments.
尽管取得了显著进展,但目前磁性纳米颗粒的加热效率虽有显著提高但仍未达到最佳状态,这阻碍了全身递送磁热疗在减小肿瘤大小或阻止肿瘤生长方面的有效性。为应对这一挑战,已开发出种子生长热分解法来合成具有立方双锥体形态且纳米结构内同时包含磁铁矿和磁赤铁矿相的钴掺杂氧化铁纳米颗粒。它们具有14,686±396 W g Fe的出色比吸收率,在交变磁场(315 kHz;26.8 kA m)作用下每秒温度升高3.73°C。用靶向癌症的促黄体生成素释放激素(LHRH)肽功能化的立方双锥体形状的纳米颗粒,在以4 mg kg的相对低剂量静脉注射后,能有效地在卵巢癌异种移植瘤中积累,以高效的加热速率将肿瘤内温度升高到50°C以上。与先前报道的具有超高加热效率的磁性纳米颗粒相比,所开发的立方双锥体形状的纳米颗粒在单次30分钟的磁热疗后能有效阻止卵巢癌肿瘤生长。这些结果强调了形状依赖性磁热疗的巨大潜力,其中独特的立方双锥体形态显著提高了磁性纳米颗粒的加热效率和治疗效果,彻底改变了磁性纳米材料的设计,并显著提高了基于热疗的癌症治疗的有效性。
ACS Appl Mater Interfaces. 2025-8-20
Electromagn Biol Med. 2025-6-29
Nanoscale Adv. 2025-7-16
J Biomed Mater Res B Appl Biomater. 2025-9
Nanomaterials (Basel). 2024-3-20
Molecules. 2022-12-26