Suppr超能文献

使用彩色眼底照片评估用于青光眼检测的基础人工智能模型。

Evaluating a Foundation Artificial Intelligence Model for Glaucoma Detection Using Color Fundus Photographs.

作者信息

Chuter Benton, Huynh Justin, Hallaj Shahin, Walker Evan, Liebmann Jeffrey M, Fazio Massimo A, Girkin Christopher A, Weinreb Robert N, Christopher Mark, Zangwill Linda M

机构信息

Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, California.

School of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois.

出版信息

Ophthalmol Sci. 2024 Sep 14;5(1):100623. doi: 10.1016/j.xops.2024.100623. eCollection 2025 Jan-Feb.

Abstract

PURPOSE

To evaluate RETFound, a foundation artificial intelligence model, using a diverse clinical research dataset to assess its accuracy in detecting glaucoma using optic disc photographs. The model's accuracy for glaucoma detection was evaluated across race, age, glaucoma severity, and various training cycles (epochs) and dataset sample sizes.

DESIGN

Evaluation of a diagnostic technology.

PARTICIPANTS

The study included 9787 color fundus photographs (CFPs) from 2329 participants of diverse race (White [73.4%], Black [13.6%] and other [13%]), disease severity (21.8% mild glaucoma, 7.2% moderate or advanced glaucoma, 60.3% not glaucoma, and 10.7% unreported), and age (48.8% <60 years, 51.1% >60 years) from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. All fundus photographs were graded as "Glaucomatous" or "Non-glaucomatous."

METHODS

The study employed RETFound, a self-supervised learning model, to perform binary glaucoma classification. The diagnostic accuracy of RETFound was iteratively tested across different combinations of dataset sample sizes (50-2000 optic disc photographs), training cycles (5-50), and study subpopulations stratified by severity of glaucoma, age, and race).

MAIN OUTCOME MEASURES

Diagnostic accuracy area under the receiver operating characteristic curve (AUC) for classifying CFP as "Glaucomatous" or "Non-glaucomatous."

RESULTS

Performance increased with larger training datasets and more training cycles, improving from 50 training images and 5 epochs (AUC: 0.52) to 2000 training images and 50 epochs (AUC: 0.86), with reduced gain in performance from approximately 500 and 1000 training images (AUC of 0.82 and 0.83, respectively). Performance was consistent across race and age for all training size and cycle number combinations: Black (AUC = 0.87) vs. other (AUC = 0.86), and >60 years (AUC = 0.84) vs. <60 years (AUC = 0.87). Performance was significantly higher in patients with moderate to severe vs. mild glaucoma (AUC = 0.95 vs. 0.84, respectively).

CONCLUSIONS

Good RETFound performance was observed with a relatively small sample size of optic disc photographs used for fine-tuning and across differences in race and age. RETFound's ability to adapt across a range of CFP training conditions and populations suggests it is a promising tool to automate glaucoma detection in a variety of use cases.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

评估基础人工智能模型RETFound,使用多样化的临床研究数据集来评估其通过视盘照片检测青光眼的准确性。在不同种族、年龄、青光眼严重程度以及各种训练周期(轮次)和数据集样本量的情况下,对该模型检测青光眼的准确性进行评估。

设计

诊断技术评估。

参与者

该研究纳入了来自2329名不同种族(白人[73.4%]、黑人[13.6%]和其他种族[13%])、疾病严重程度(21.8%轻度青光眼、7.2%中度或重度青光眼、60.3%非青光眼以及10.7%未报告)和年龄(48.8%<60岁、51.1%>60岁)的参与者的9787张彩色眼底照片(CFP),这些照片来自青光眼诊断创新研究以及非洲裔和青光眼评估研究。所有眼底照片均被分类为“青光眼性”或“非青光眼性”。

方法

该研究采用自监督学习模型RETFound进行青光眼二元分类。在数据集样本量(50 - 2000张视盘照片)、训练周期(5 - 50轮)以及按青光眼严重程度、年龄和种族分层的研究亚组的不同组合中,对RETFound的诊断准确性进行迭代测试。

主要观察指标

将CFP分类为“青光眼性”或“非青光眼性”的受试者操作特征曲线(AUC)下的诊断准确性面积。

结果

随着训练数据集增大和训练周期增多,性能有所提高,从50张训练图像和5轮(AUC:0.52)提升至2000张训练图像和50轮(AUC:0.86),而在大约500张和1000张训练图像时性能提升有所减少(AUC分别为0.82和0.83)。在所有训练规模和周期数组合中,不同种族和年龄的性能保持一致:黑人(AUC = 0.87)与其他种族(AUC = 0.86)相比,以及>60岁(AUC = 0.84)与<60岁(AUC = 0.87)相比。中度至重度青光眼患者的性能显著高于轻度青光眼患者(AUC分别为0.95和0.84)。

结论

在用于微调的视盘照片样本量相对较小的情况下,以及在不同种族和年龄差异中,均观察到RETFound具有良好性能。RETFound能够适应一系列CFP训练条件和人群,这表明它是在各种应用场景中实现青光眼检测自动化的一个有前景的工具。

财务披露

在本文末尾的脚注和披露中可能会发现专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e0b/11625234/dd85721d6734/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验