Biswas Antara, De Subhajyoti
Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
Methods Mol Biol. 2025;2932:177-186. doi: 10.1007/978-1-0716-4566-6_9.
Functional interactions within and between different types of somatic cells are crucial for executing complex organ-level biological processes in multicellular organisms. Spatial transcriptomic technologies have allowed for high throughput characterization of cell communities and associated cellular processes in the tissue contexts. However, analytical resources for characterization and quantitative inference of spatial interactions among somatic cells that can potentially impact complex biological functions in tissue microenvironment are still limited. Here, we describe a framework to use network graph-based spatial statistical models on spatially annotated molecular data to gain insights into cellular relationship and connectivity in the local tumor microenvironment and evaluate the effects of network graph connectivity on the model inference.
不同类型体细胞内部以及它们之间的功能相互作用对于多细胞生物中复杂器官水平生物过程的执行至关重要。空间转录组技术能够在组织环境中对细胞群落及相关细胞过程进行高通量表征。然而,用于表征和定量推断体细胞间空间相互作用(这些相互作用可能会影响组织微环境中的复杂生物学功能)的分析资源仍然有限。在此,我们描述了一个框架,该框架基于空间注释分子数据使用基于网络图的空间统计模型,以深入了解局部肿瘤微环境中的细胞关系和连通性,并评估网络图连通性对模型推断的影响。