Suppr超能文献

Res-TransNet:一种用于在CT图像中预测肺腺癌病理亚型的混合深度学习网络。

Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images.

作者信息

Su Yue, Xia Xianwu, Sun Rong, Yuan Jianjun, Hua Qianjin, Han Baosan, Gong Jing, Nie Shengdong

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

Department of Oncology Intervention, Municipal Hospital Affiliated of Taizhou University, Zhejiang, Taizhou, 318000, China.

出版信息

J Imaging Inform Med. 2024 Dec;37(6):2883-2894. doi: 10.1007/s10278-024-01149-z. Epub 2024 Jun 11.

Abstract

This study aims to develop a CT-based hybrid deep learning network to predict pathological subtypes of early-stage lung adenocarcinoma by integrating residual network (ResNet) with Vision Transformer (ViT). A total of 1411 pathologically confirmed ground-glass nodules (GGNs) retrospectively collected from two centers were used as internal and external validation sets for model development. 3D ResNet and ViT were applied to investigate two deep learning frameworks to classify three subtypes of lung adenocarcinoma namely invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma and adenocarcinoma in situ, respectively. To further improve the model performance, four Res-TransNet based models were proposed by integrating ResNet and ViT with different ensemble learning strategies. Two classification tasks involving predicting IAC from Non-IAC (Task1) and classifying three subtypes (Task2) were designed and conducted in this study. For Task 1, the optimal Res-TransNet model yielded area under the receiver operating characteristic curve (AUC) values of 0.986 and 0.933 on internal and external validation sets, which were significantly higher than that of ResNet and ViT models (p < 0.05). For Task 2, the optimal fusion model generated the accuracy and weighted F1 score of 68.3% and 66.1% on the external validation set. The experimental results demonstrate that Res-TransNet can significantly increase the classification performance compared with the two basic models and have the potential to assist radiologists in precision diagnosis.

摘要

本研究旨在开发一种基于CT的混合深度学习网络,通过将残差网络(ResNet)与视觉Transformer(ViT)相结合来预测早期肺腺癌的病理亚型。从两个中心回顾性收集的总共1411个经病理证实的磨玻璃结节(GGN)用作模型开发的内部和外部验证集。应用3D ResNet和ViT分别研究两种深度学习框架,以对肺腺癌的三种亚型进行分类,即浸润性腺癌(IAC)、微浸润性腺癌和原位腺癌。为了进一步提高模型性能,通过将ResNet和ViT与不同的集成学习策略相结合,提出了四种基于Res-TransNet的模型。本研究设计并开展了两项分类任务,分别是从非IAC中预测IAC(任务1)和对三种亚型进行分类(任务2)。对于任务1,最优的Res-TransNet模型在内部和外部验证集上的受试者操作特征曲线下面积(AUC)值分别为0.986和0.933,显著高于ResNet和ViT模型(p<0.05)。对于任务2,最优融合模型在外部验证集上的准确率和加权F1分数分别为68.3%和66.1%。实验结果表明,与两种基本模型相比,Res-TransNet可以显著提高分类性能,并且有潜力协助放射科医生进行精准诊断。

相似文献

1
Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images.
J Imaging Inform Med. 2024 Dec;37(6):2883-2894. doi: 10.1007/s10278-024-01149-z. Epub 2024 Jun 11.
2
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
Eur Radiol. 2020 Apr;30(4):1847-1855. doi: 10.1007/s00330-019-06533-w. Epub 2019 Dec 6.
3
Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
Phys Med Biol. 2021 Mar 4;66(6):065015. doi: 10.1088/1361-6560/abe735.
6
Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis.
Phys Med Biol. 2019 Jul 5;64(13):135015. doi: 10.1088/1361-6560/ab2757.
7
Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.
AJR Am J Roentgenol. 2024 Jan;222(1):e2329674. doi: 10.2214/AJR.23.29674. Epub 2023 Jul 26.
9
CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules.
Comput Math Methods Med. 2022 Jan 7;2022:8967643. doi: 10.1155/2022/8967643. eCollection 2022.
10

本文引用的文献

1
The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015.
J Thorac Oncol. 2022 Mar;17(3):362-387. doi: 10.1016/j.jtho.2021.11.003. Epub 2021 Nov 20.
2
TransMed: Transformers Advance Multi-Modal Medical Image Classification.
Diagnostics (Basel). 2021 Jul 31;11(8):1384. doi: 10.3390/diagnostics11081384.
3
Contemporary issues in the implementation of lung cancer screening.
Eur Respir Rev. 2021 Jul 20;30(161). doi: 10.1183/16000617.0288-2020. Print 2021 Sep 30.
4
Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography.
Transl Oncol. 2021 Aug;14(8):101141. doi: 10.1016/j.tranon.2021.101141. Epub 2021 Jun 1.
5
Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning.
J Thorac Cardiovasc Surg. 2022 Apr;163(4):1496-1505.e10. doi: 10.1016/j.jtcvs.2021.02.010. Epub 2021 Feb 16.
6
Determining the invasiveness of ground-glass nodules using a 3D multi-task network.
Eur Radiol. 2021 Sep;31(9):7162-7171. doi: 10.1007/s00330-021-07794-0. Epub 2021 Mar 4.
7
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
8
3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation.
Comput Med Imaging Graph. 2021 Mar;88:101814. doi: 10.1016/j.compmedimag.2020.101814. Epub 2020 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验