Montessoro Patrícia, Paixão Joaquin Felipe Roca, Costa Carinne N M, Ducatti Laura, Grangeiro Letícia Perdigão, Ruivo Vivian, Fusaro Adriana Flores, Ballesteros Helkin F, Iurif Vanessa, Cabral Luiz Mors, de Andrade Jelmir Craveiro, Tessaro Leticia, Bernado Wallace de Paula, Coelho Fernanda Silva, de Araújo-Lopes Bruna Gino, de Almeida Engler Janice, Bazin Jérémie, Campostrini Eliemar, Conte-Junior Carlos Adam, Hemerly Adriana Silva
Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.
Plant J. 2025 Aug;123(3):e70399. doi: 10.1111/tpj.70399.
Plants have developed a sophisticated regulatory network that coordinates gene expression in meristematic zones in response to environmental conditions. Here, we identified a protein in Arabidopsis (Arabidopsis thaliana) that interacts with Armadillo BTB Arabidopsis protein 1 (ABAP1), a negative regulator of the cell cycle in plants. We characterized the ABAP1 interacting protein (named AIP10) investigating its role in modulating plant development. T-DNA insertion lines with silenced expression of AIP10 were evaluated phenotypically (morphology, fresh and dry weight), via transcriptomics analyses (RNA-Seq and RT-qPCR), physiologically (biochemically, Fluorcam and Li-COR) and metabolically (ATR-FTIR). We showed that AIP10 integrates cell division rates with transcriptional and primary metabolism reprogramming through its protein interactions with ABAP1 and KIN10, a subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase 1). ABAP1 levels and activity were reduced in the absence of AIP10, licensing cell cycle progression for longer periods, which culminated in increased rates of cell division that boosted vegetative and reproductive growth. AIP10 knockout triggered a major transcriptional reprogramming of plant primary metabolism, possibly through SnRK1 modulation. aip10 mutants showed increased photosynthetic efficiency, as well as boosted carbon fixation, leading to increased biomass, seed productivity, and higher contents of proteins, lipids (triglycerides), and carbohydrates. Finally, we propose that the modulation of AIP10 expression is part of a mechanism that coordinates higher rates of cell division with better photosynthetic performance and carbon fixation to metabolically meet the plant energy demand, allowing the generation of plants with increased biomass and productivity.
植物已经形成了一个复杂的调控网络,该网络可根据环境条件协调分生组织区域中的基因表达。在此,我们在拟南芥中鉴定出一种与犰狳BTB拟南芥蛋白1(ABAP1)相互作用的蛋白质,ABAP1是植物细胞周期的负调控因子。我们对ABAP1相互作用蛋白(命名为AIP10)进行了表征,研究了其在调节植物发育中的作用。通过转录组学分析(RNA测序和逆转录定量聚合酶链反应)、生理学(生化、Fluorcam和Li-COR)和代谢组学(衰减全反射傅里叶变换红外光谱)对AIP10表达沉默的T-DNA插入系进行了表型评估(形态学、鲜重和干重)。我们发现,AIP10通过其与ABAP1和KIN10(SnRK1(蔗糖非发酵-1相关蛋白激酶1)的一个亚基)的蛋白质相互作用,将细胞分裂速率与转录和初级代谢重编程整合在一起。在没有AIP10的情况下,ABAP1的水平和活性降低,使细胞周期能够在更长时间内进行,最终导致细胞分裂速率增加,促进营养生长和生殖生长。AIP10基因敲除引发了植物初级代谢的重大转录重编程,可能是通过对SnRK1的调节实现的。aip10突变体表现出光合效率提高以及碳固定增强,从而导致生物量增加、种子产量提高以及蛋白质、脂质(甘油三酯)和碳水化合物含量增加。最后,我们提出,AIP10表达的调节是一种机制的一部分,该机制将更高的细胞分裂速率与更好的光合性能和碳固定协调起来,以在代谢上满足植物的能量需求,从而产生生物量和生产力增加的植物。