Crossa José, Cerón-Rojas J Jesus, Montesinos-López Abelardo, Montesinos-López Osval A, Punzalan Jomar, Famoso Adam, Fritsche-Neto Roberto
Colegio de Postgraduados, Post-grado en Estadistica y en Economia, Montecillos, Edo. de México CP 56230, México.
International Maize and Wheat Improvement Center (CIMMYT), Biometrics, Quantitative Genetics and Statistics Unit, Km 45, Carretera México-Veracruz, Edo. de México CP 52640, México.
G3 (Bethesda). 2025 Jun 4;15(6). doi: 10.1093/g3journal/jkaf087.
Improving genetic gains in rice breeding programs requires accurate prediction methods for selection indices. Effective use of genomic prediction could significantly accelerate breeding cycles. The Smith index method (SIM), the eigenvalue selection index method (ESIM), and the desired gain index (DG) are linear combinations of trait phenotypic values y (I=b'y), and while the SIM and ESIM predict the net genetics merit (H=w'c), where w is the vector of economic weights and c is the unobserved genotypic values, the DG predicts the mean of genotypic values. To enhance genomic prediction accuracy, mixed linear and Bayesian models incorporate molecular markers to estimate genomic effects, resulting in genomic estimated breeding values. This study evaluated (1) the efficiency of the SIM, ESIM, and DG through their main parameters and (2) the predictive accuracy of 5 genomic prediction models utilizing historical rice (Oryza sativa) data from 2018 to 2021 to predict selection indices for 2022. The correlation between observed and predicted indices assessed the effectiveness of each genomic model. Models incorporating year-specific and environmental covariates significantly improved predictive performance. These findings underscore the importance of environmental covariates and indicate that the SIM is the most effective method for maximizing key index parameters, while the ESIM provides the best predictive accuracy for indices. Consequently, rice breeders are encouraged to use these indices to enhance genetic gains per selection cycle.
提高水稻育种计划中的遗传增益需要准确的选择指数预测方法。有效利用基因组预测可以显著加快育种周期。史密斯指数法(SIM)、特征值选择指数法(ESIM)和期望增益指数(DG)是性状表型值y的线性组合(I = b'y),虽然SIM和ESIM预测净遗传价值(H = w'c),其中w是经济权重向量,c是未观察到的基因型值,但DG预测基因型值的均值。为了提高基因组预测准确性,混合线性模型和贝叶斯模型纳入分子标记来估计基因组效应,从而得到基因组估计育种值。本研究评估了(1)通过SIM、ESIM和DG的主要参数评估其效率,以及(2)利用2018年至2021年的历史水稻(Oryza sativa)数据预测2022年选择指数的5种基因组预测模型的预测准确性。观察到的指数与预测指数之间的相关性评估了每个基因组模型的有效性。纳入特定年份和环境协变量的模型显著提高了预测性能。这些发现强调了环境协变量的重要性,并表明SIM是最大化关键指数参数的最有效方法,而ESIM为指数提供了最佳预测准确性。因此,鼓励水稻育种者使用这些指数来提高每个选择周期的遗传增益。