文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

普通菜豆泛基因组揭示了丰富的变异模式以及胁迫响应基因和途径之间的关系。

Common bean pan-genome reveals abundant variation patterns and relationships of stress response genes and pathways.

作者信息

Wang Xu, Yan Ming, Cui Shanshan, Li Fang, Zhao Qingqing, Wang Qingnan, Jiang Bin, Huang Yixin, Sun Yang, Kong Xiangdong

机构信息

Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

出版信息

BMC Genomics. 2025 May 16;26(1):495. doi: 10.1186/s12864-025-11662-2.


DOI:10.1186/s12864-025-11662-2
PMID:40380089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12084947/
Abstract

Long-term geographical isolation and the different directions of domestication can cause a large number of genome variations. Population genetic analysis based on a single reference genome cannot capture all the variation information. Pan-genome construction is an effective way to overcome this problem. Resequencing data from 683 common bean landraces and breeding lines provided a pan-genome construction data resource. For the first time, for common bean pan-genome construction, 305 Mb non-reference contigs and 10,452 novel genes were identified. Among these new genes, 373 resistance gene analogs containing 372 variable genes were identified and used to narrow down the candidate genes in Pseudomonas syringae pv. phaseolicola resistance quantitative trait locus interval of the common bean. Transcriptome analysis of multiple biotic and abiotic stresses reveals that gene expression patterns are organ-, stress-, and gene conservation-specific. Core and shell genes may be co-expressed in all samples and may have functional complementarity to maintain the stability of plant growth. Within pathways, 8990 and 30,272 mutual exclusivity and co-occurrence gene presence-absence variations (PAVs) were discovered respectively, providing further insights into the functional complementarity of genes. In conclusion, our study provides a comprehensive genome resource, which will be useful for further common bean breeding and study.

摘要

长期的地理隔离和不同的驯化方向会导致大量的基因组变异。基于单一参考基因组的群体遗传分析无法捕获所有的变异信息。泛基因组构建是克服这一问题的有效方法。来自683个普通菜豆地方品种和育种系的重测序数据提供了泛基因组构建的数据资源。首次针对普通菜豆泛基因组构建,鉴定出3.05 Mb的非参考重叠群和10452个新基因。在这些新基因中,鉴定出373个抗性基因类似物,其中包含372个可变基因,并用于缩小菜豆丁香假单胞菌菜豆致病变种抗性数量性状位点区间内的候选基因范围。对多种生物和非生物胁迫的转录组分析表明,基因表达模式具有器官、胁迫和基因保守特异性。核心基因和外壳基因可能在所有样本中共同表达,并且可能具有功能互补性以维持植物生长的稳定性。在各通路内,分别发现了8990个和30272个互斥和共现基因的存在-缺失变异(PAV),为基因的功能互补性提供了进一步的见解。总之,我们的研究提供了一个全面的基因组资源,这将有助于进一步开展普通菜豆的育种和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/2ee0605da3d8/12864_2025_11662_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/0fe4bbaf1590/12864_2025_11662_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/b77637d3ec24/12864_2025_11662_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/b4169ad18a9f/12864_2025_11662_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/fa7b4f1d7940/12864_2025_11662_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/e12287e4baa3/12864_2025_11662_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/c54706160866/12864_2025_11662_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/2ee0605da3d8/12864_2025_11662_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/0fe4bbaf1590/12864_2025_11662_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/b77637d3ec24/12864_2025_11662_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/b4169ad18a9f/12864_2025_11662_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/fa7b4f1d7940/12864_2025_11662_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/e12287e4baa3/12864_2025_11662_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/c54706160866/12864_2025_11662_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/12084947/2ee0605da3d8/12864_2025_11662_Fig7_HTML.jpg

相似文献

[1]
Common bean pan-genome reveals abundant variation patterns and relationships of stress response genes and pathways.

BMC Genomics. 2025-5-16

[2]
Adaptive gene loss in the common bean pan-genome during range expansion and domestication.

Nat Commun. 2024-8-7

[3]
Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar.

Int J Mol Sci. 2017-11-23

[4]
The Proteomics of Resistance to Halo Blight in Common Bean.

Mol Plant Microbe Interact. 2020-7-29

[5]
Pseudomonas phaseolicola preferentially modulates genes encoding leucine-rich repeat and malectin domains in the bean landrace G2333.

Planta. 2022-6-29

[6]
Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.).

PLoS One. 2016-3-1

[7]
Exploring the GRAS gene family in common bean (Phaseolus vulgaris L.): characterization, evolutionary relationships, and expression analyses in response to abiotic stresses.

Planta. 2021-9-24

[8]
Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean.

Theor Appl Genet. 2021-2

[9]
Global transcriptome analysis reveals resistance genes in the early response of common bean (Phaseolus vulgaris L.) to Colletotrichum lindemuthianum.

BMC Genomics. 2024-6-10

[10]
Resequencing of Common Bean Identifies Regions of Inter-Gene Pool Introgression and Provides Comprehensive Resources for Molecular Breeding.

Plant Genome. 2018-7

引用本文的文献

[1]
Integration of crop modeling and sensing into molecular breeding for nutritional quality and stress tolerance.

Theor Appl Genet. 2025-8-8

本文引用的文献

[1]
A pan-Zea genome map for enhancing maize improvement.

Genome Biol. 2022-8-23

[2]
High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement.

Plant Commun. 2022-11-14

[3]
Graph pangenome captures missing heritability and empowers tomato breeding.

Nature. 2022-6

[4]
Analysing high-throughput sequencing data in Python with HTSeq 2.0.

Bioinformatics. 2022-5-13

[5]
Pan-Genome Analysis Reveals the Abundant Gene Presence/Absence Variations Among Different Varieties of Melon and Their Influence on Traits.

Front Plant Sci. 2022-3-25

[6]
Dynamic evolution of small signalling peptide compensation in plant stem cell control.

Nat Plants. 2022-4

[7]
Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato.

Genome Biol. 2022-3-14

[8]
Rediscover: an R package to identify mutually exclusive mutations.

Bioinformatics. 2022-1-12

[9]
Genomic insights into the origin, domestication and diversification of Brassica juncea.

Nat Genet. 2021-9

[10]
The Chicken Pan-Genome Reveals Gene Content Variation and a Promoter Region Deletion in IGF2BP1 Affecting Body Size.

Mol Biol Evol. 2021-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索