文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测直肠癌患者对(化疗)放疗的近乎完全病理反应:一项联邦学习研究。

Predicting near-complete pathological response to (chemo)radiotherapy in patients with rectal cancer: A federated learning study.

作者信息

Mateus Pedro, Savino Mariachiara, Capocchiano Nikola Dino, Berbee Maaike, Gambacorta Maria Antonietta, Chiloiro Giuditta, Willems Yves C P, Damiani Andrea, Osong Biche, Dekker Andre, Bermejo Inigo

机构信息

Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.

Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.

出版信息

Med Phys. 2025 Aug;52(8):e18034. doi: 10.1002/mp.18034.


DOI:10.1002/mp.18034
PMID:40781740
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12334808/
Abstract

BACKGROUND: Organ preservation in patients with locally advanced rectal cancer has attracted interest due to improved quality of life and functional outcomes compared with total mesorectal excision. Hence, patients who achieve clinical complete response (cCR) after (chemo)radiotherapy are offered a watch-and-wait strategy. Those who are likely to fall short of the strict criteria of cCR and only achieve near complete response (NCR) might benefit from radiation boosting to avoid surgery. PURPOSE: To develop a prediction model that estimates the probability of NCR trained on data from different clinics. METHODS: We used data from two clinics (Maastro and Gemelli) on 1305 patients. We set up and used a federated learning infrastructure to leverage patient data from the clinics without transferring it. We used Bayesian networks for their capacity to combine expert knowledge with data and their ability to handle missing data. In this article, we propose a novel federated learning algorithm for Bayesian networks. In addition, we explore different approaches to handle missing data and train the models, combining expert elicited structures and those learnt from data. The discriminative performance of the models is reported using the area under the ROC curve (AUC). RESULTS: The model trained on data from both clinics and a structure learnt from data performed well (AUC 0.77). When using a structure elicited from an expert, the performance of the model decreased (AUC 0.68). Fine-tuning the expert structure with data led to a middle ground performance (AUC 0.72). Models trained on data from a single clinic failed to generalize when tested on data from the other clinic (AUCs 0.50 and 0.59). CONCLUSIONS: The model trained with federated learning showed good discriminative performance, which indicates that it could be useful to identify which patients with rectal cancer would benefit the most from a radiotherapy boost. This study shows that federated learning has the potential to lead to better models by allowing access to more data.

摘要

背景:与全直肠系膜切除术相比,局部晚期直肠癌患者的器官保留因生活质量和功能结局的改善而受到关注。因此,在(化疗)放疗后达到临床完全缓解(cCR)的患者可采用观察等待策略。那些可能未达到cCR的严格标准而仅实现接近完全缓解(NCR)的患者可能从加强放疗中获益以避免手术。 目的:开发一种预测模型,该模型基于来自不同诊所的数据训练来估计NCR的概率。 方法:我们使用了来自两家诊所(马斯特里赫特大学医学中心和杰梅利诊所)的1305例患者的数据。我们建立并使用了联邦学习基础设施,以利用诊所的患者数据而不进行数据传输。我们使用贝叶斯网络,因为它们能够将专家知识与数据相结合,并且能够处理缺失数据。在本文中,我们提出了一种用于贝叶斯网络的新型联邦学习算法。此外,我们探索了处理缺失数据和训练模型的不同方法,将专家得出的结构与从数据中学习到的结构相结合。使用ROC曲线下面积(AUC)报告模型的判别性能。 结果:在来自两家诊所的数据以及从数据中学习到的结构上训练的模型表现良好(AUC为0.77)。当使用从专家得出的结构时,模型的性能下降(AUC为0.68)。用数据对专家结构进行微调导致了中等性能(AUC为0.72)。在来自单个诊所的数据上训练的模型在使用来自另一个诊所的数据进行测试时无法泛化(AUC分别为0.50和0.59)。 结论:通过联邦学习训练的模型显示出良好的判别性能,这表明它可能有助于识别哪些直肠癌患者将从加强放疗中获益最大。这项研究表明,联邦学习有潜力通过允许访问更多数据而产生更好的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12334808/70df2c6d6df2/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12334808/5b4bb3006545/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12334808/70df2c6d6df2/MP-52-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12334808/5b4bb3006545/MP-52-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777c/12334808/70df2c6d6df2/MP-52-0-g001.jpg

相似文献

[1]
Predicting near-complete pathological response to (chemo)radiotherapy in patients with rectal cancer: A federated learning study.

Med Phys. 2025-8

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[4]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[7]
Watch and Wait for rectal cancer in inflammatory bowel disease.

BMJ Case Rep. 2023-7-10

[8]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[9]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
The Impact of Multi-Institution Datasets on the Generalizability of Machine Learning Prediction Models in the ICU.

Crit Care Med. 2024-11-1

[2]
Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database.

PLOS Digit Health. 2022-4-5

[3]
Neoadjuvant chemoradiotherapy with radiation dose escalation with contact x-ray brachytherapy boost or external beam radiotherapy boost for organ preservation in early cT2-cT3 rectal adenocarcinoma (OPERA): a phase 3, randomised controlled trial.

Lancet Gastroenterol Hepatol. 2023-4

[4]
VANTAGE6: an open source priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight eXchange.

AMIA Annu Symp Proc. 2020

[5]
Federated Learning for Healthcare Informatics.

J Healthc Inform Res. 2021

[6]
Calculating the sample size required for developing a clinical prediction model.

BMJ. 2020-3-18

[7]
GDPR: an impediment to research?

Ir J Med Sci. 2019-11

[8]
Decision analytic modeling for the economic analysis of proton radiotherapy for non-small cell lung cancer.

Transl Lung Cancer Res. 2018-4

[9]
Organ Preservation in Rectal Cancer After Chemoradiation: Should We Extend the Observation Period in Patients with a Clinical Near-Complete Response?

Ann Surg Oncol. 2017-11-13

[10]
Decision support systems for personalized and participative radiation oncology.

Adv Drug Deliv Rev. 2016-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索