Chai Yulong, Chai Xiuqing, Zhang Lan, Ye Gang, Sheykhahmad Fatima Rashid
Lin'an Oral Hospital, Hangzhou, 311300, Zhejiang, China.
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311300, Zhejiang, China.
Sci Rep. 2025 Aug 9;15(1):29218. doi: 10.1038/s41598-025-11861-7.
In this study, we propose a new method for oral cancer detection using a modified Vanilla Convolutional Neural Network (CNN) architecture with incorporated batch normalization, dropout regularization, and a customized design structure for the convolutional block. An Improved Artificial Protozoa Optimizer (IAPO) metaheuristic algorithm is proposed to optimize the Vanilla CNN and the IAPO improves the original Artificial Protozoa Optimizer through a new search strategy and adaptive parameter tuning mechanism. Due to its effectiveness in search space exploration while avoiding local optimal points, the IAPO algorithm is chosen to optimize the convolutional neural network. In this study, a dataset of 1000 images of patients had published which will be preprocessed with contrast enhancement, noise reduction and data augmentation (like rotation, flipping and cropping) to generate the robust targeted model for oral cancer detection. The experimental results are evaluated against benchmark performance measures (accuracies, precision, recall, F1-score and area under the receiver operating characteristic (ROC) curve (AUC-ROC). We demonstrate through experimental results that the proposed IAPO optimized Vanilla CNN achieves a high accuracy of 92.5% which is superior than the previous state-of-the art models such as ResNet-101 (90.1%) and DenseNet-121 (89.5%). This proves to be a more trustworthy approach to oral cancer detectionbecause of the accuracy of the proposed method in comparison to denoting the supplementary results of the suggested method in contrast to other existing models.
在本研究中,我们提出了一种用于口腔癌检测的新方法,该方法使用了一种经过改进的香草卷积神经网络(CNN)架构,其中纳入了批量归一化、随机失活正则化以及针对卷积块的定制设计结构。我们提出了一种改进的人工原生动物优化器(IAPO)元启发式算法来优化香草CNN,并且IAPO通过一种新的搜索策略和自适应参数调整机制改进了原始的人工原生动物优化器。由于其在搜索空间探索方面的有效性,同时又能避免局部最优解,因此选择IAPO算法来优化卷积神经网络。在本研究中,已发布了一个包含1000张患者图像的数据集,该数据集将通过对比度增强、降噪和数据增强(如旋转、翻转和裁剪)进行预处理,以生成用于口腔癌检测的强大目标模型。实验结果根据基准性能指标(准确率、精确率、召回率、F1分数以及受试者工作特征曲线(ROC)下的面积(AUC-ROC))进行评估。我们通过实验结果证明,所提出的IAPO优化香草CNN实现了92.5%的高精度,这优于先前的一些先进模型,如ResNet-101(90.1%)和DenseNet-121(89.5%)。与其他现有模型相比,由于所提出方法的准确性,这被证明是一种更值得信赖的口腔癌检测方法,而不是仅仅表示所建议方法的补充结果。