Suppr超能文献

一种具有随机备用和双自适应权重策略的改进果蝇优化算法用于油气生产优化

An enhanced fruit fly optimization algorithm with random spare and double adaptive weight strategies for oil and gas production optimization.

作者信息

Wang Xu, Shan Jingfu

机构信息

School of Geosciences, Yangtze University, Caidian, Wuhan, 430100, China.

Key Laboratory of Exploration Technologies for Oil and Gas Resources, MOE, Yangtze University, Wuhan, 430100, China.

出版信息

Sci Rep. 2025 Aug 9;15(1):29231. doi: 10.1038/s41598-025-15205-3.

Abstract

In the field of petroleum extraction, enhancing oil and gas recovery processes is essential for sustaining the economic viability of energy enterprises and addressing the continuously increasing global energy demand. Efficient subsurface production plays a pivotal role in strategic decision-making, including the selection of optimal drilling sites and the determination of effective well control parameters. However, conventional reservoir optimization techniques are often computationally intensive and may struggle to deliver satisfactory solutions. As a promising alternative, evolutionary algorithms-rooted in the principles of natural selection-have demonstrated strong potential for addressing complex optimization problems due to their gradient-free nature and inherent suitability for parallel computation. In this study, we propose an enhanced evolutionary algorithm tailored for global optimization and oil and gas production improvement. This method builds upon the original Fruit Fly Optimization Algorithm (FOA) by incorporating a random spare mechanism and a dual adaptive weighting scheme, aiming to achieve a more effective balance between exploration and exploitation during the search process. Specifically, after the standard FOA updates the population, the random spare mechanism is introduced to enhance exploratory capabilities and avoid premature convergence. Subsequently, the dual adaptive weighting strategy is employed to improve convergence speed and solution refinement. The proposed RDFOA algorithm is rigorously validated through comprehensive experiments on benchmark test suites from IEEE CEC 2017 and IEEE CEC 2022. These evaluations include ablation studies, scalability analyses, visualization of search trajectories, and comparative assessments against state-of-the-art algorithms. On the CEC 2017 benchmark, RDFOA outperforms CLACO in 17 functions and QCSCA in 19 functions. On the CEC 2022 benchmark, it surpasses CCMSCSA and HGWO in 10 functions. The experimental results clearly demonstrate that RDFOA consistently achieves superior performance in oil and gas production optimization scenarios.

摘要

在石油开采领域,提高油气采收率对于维持能源企业的经济可行性以及满足不断增长的全球能源需求至关重要。高效的地下开采在战略决策中起着关键作用,包括选择最佳钻井地点和确定有效的井控参数。然而,传统的油藏优化技术通常计算量很大,可能难以提供令人满意的解决方案。作为一种有前途的替代方法,基于自然选择原理的进化算法因其无梯度性质和固有的并行计算适用性,在解决复杂优化问题方面显示出强大的潜力。在本研究中,我们提出了一种针对全局优化和油气生产改进的增强型进化算法。该方法在原始果蝇优化算法(FOA)的基础上,引入了随机备用机制和双自适应加权方案,旨在在搜索过程中实现探索与利用之间更有效的平衡。具体而言,在标准FOA更新种群后,引入随机备用机制以增强探索能力并避免过早收敛。随后,采用双自适应加权策略来提高收敛速度和优化解。所提出的RDFOA算法通过对IEEE CEC 2017和IEEE CEC 2022的基准测试套件进行全面实验得到了严格验证。这些评估包括消融研究、可扩展性分析、搜索轨迹可视化以及与现有最先进算法的比较评估。在CEC 2017基准测试中,RDFOA在17个函数上优于CLACO,在19个函数上优于QCSCA。在CEC 2022基准测试中,它在10个函数上超过了CCMSCSA和HGWO。实验结果清楚地表明,RDFOA在油气生产优化场景中始终实现卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验