Suppr超能文献

AE-BPNN:基于自动编码器和反向传播神经网络的锂离子电池健康状态估计模型。

AE-BPNN: autoencoder and backpropagation neural network-based model for lithium-ion battery state of health estimation.

作者信息

Al-Dulaimi Abdullah Ahmed, Guneser Muhammet Tahir, Al-Shabandar Raghad, Gu Yeonghyeon, Syafrudin Muhammad, Fitriyani Norma Latif

机构信息

Department of Electrical and Electronics Engineering, Karabuk University, Karabuk, 78050, Turkey.

Ministry of Education, General Directorate of Administrative Affairs - Ur Portal, Baghdad, Iraq.

出版信息

Sci Rep. 2025 Aug 9;15(1):29193. doi: 10.1038/s41598-025-12771-4.

Abstract

Lithium-ion (Li-ion) batteries play a crucial role in modern energy storage systems, with their performance and longevity heavily dependent on accurately assessing their State of Health (SOH). Electrochemical Impedance Spectroscopy (EIS) has emerged as a powerful technique for SOH evaluation, capturing the battery's intricate electrochemical properties. However, practical EIS implementation poses challenges due to the need for expensive equipment and controlled testing conditions. This study introduces a data-driven approach to estimate the SOH of Li-ion batteries using EIS data. An autoencoder backpropagation neural network (AE-BPNN) was developed for unsupervised processing, dimensionality reduction, feature extraction, and SOH estimation. Two optimization algorithms-Scaled Conjugate Gradient (SCG) and Resilient Backpropagation (RBP)-were utilized to tune network weights and enhance performance. Experiments were conducted on eight Eunicell cells across six operational states (I, II, III, IV, V, IX) at various temperatures (25 °C, 35 °C, 45 °C). The AE-BPNN model demonstrated significant advantages over Gaussian Process Regression (GPR) and Support Vector Regression (SVR), yielding lower Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), alongside higher R² scores. Across all evaluated states, the AE-BPNN achieved the lowest average RMSE values of 0.0192 and 0.0176 for the 35C02 and 45C02 cells, respectively, compared to GPR (0.0429, 0.0485) and SVR (0.0404, 0.0334), thereby confirming its superior accuracy in estimating the state of health of Li-ion batteries.

摘要

锂离子(Li-ion)电池在现代储能系统中发挥着至关重要的作用,其性能和寿命在很大程度上取决于对其健康状态(SOH)的准确评估。电化学阻抗谱(EIS)已成为一种用于SOH评估的强大技术,能够捕捉电池复杂的电化学特性。然而,由于需要昂贵的设备和可控的测试条件,EIS的实际应用面临挑战。本研究引入了一种数据驱动的方法,利用EIS数据来估计锂离子电池的SOH。开发了一种自动编码器反向传播神经网络(AE-BPNN)用于无监督处理、降维、特征提取和SOH估计。使用了两种优化算法——缩放共轭梯度(SCG)和弹性反向传播(RBP)来调整网络权重并提高性能。在八个Eunicell电池上进行了实验,这些电池处于六个运行状态(I、II、III、IV、V、IX),温度范围为25°C、35°C、45°C。AE-BPNN模型相对于高斯过程回归(GPR)和支持向量回归(SVR)显示出显著优势,具有更低的均方根误差(RMSE)和平均绝对百分比误差(MAPE),以及更高的R²分数。在所有评估状态下,与GPR(0.0429、0.0485)和SVR(0.0404、0.0334)相比,AE-BPNN分别在35C02和45C02电池上实现了最低的平均RMSE值,分别为0.0192和0.0176,从而证实了其在估计锂离子电池健康状态方面的卓越准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9700/12335449/50cfba57b187/41598_2025_12771_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验