College of Computer Science and Technology, Qingdao University, Qingdao 266071, China.
School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China.
Drug Discov Today. 2022 Dec;27(12):103373. doi: 10.1016/j.drudis.2022.103373. Epub 2022 Sep 24.
With advances in artificial intelligence (AI) methods, computer-aided drug design (CADD) has developed rapidly in recent years. Effective molecular representation and accurate property prediction are crucial tasks in CADD workflows. In this review, we summarize contemporary applications of deep learning (DL) methods for molecular representation and property prediction. We categorize DL methods according to the format of molecular data (1D, 2D, and 3D). In addition, we discuss some common DL models, such as ensemble learning and transfer learning, and analyze the interpretability methods for these models. We also highlight the challenges and opportunities of DL methods for molecular representation and property prediction.
随着人工智能 (AI) 方法的进步,计算机辅助药物设计 (CADD) 在近年来发展迅速。有效的分子表示和准确的性质预测是 CADD 工作流程中的关键任务。在这篇综述中,我们总结了深度学习 (DL) 方法在分子表示和性质预测方面的最新应用。我们根据分子数据的格式 (1D、2D 和 3D) 对 DL 方法进行分类。此外,我们还讨论了一些常见的 DL 模型,如集成学习和迁移学习,并分析了这些模型的可解释性方法。我们还强调了 DL 方法在分子表示和性质预测方面面临的挑战和机遇。