文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习与影像组学融合用于预测磨玻璃结节内肺腺癌的侵袭性

Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

作者信息

Sun Qian, Yu Lei, Song Zhongquan, Wang Can, Li Wei, Chen Wang, Xu Juan, Han Shuhua

机构信息

Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, No. 87 Dingjia Bridge, Nanjing, 210009, Jiangsu, China.

Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, No. 66 Renmin South Road, Yancheng, 224006, China.

出版信息

Sci Rep. 2025 Aug 11;15(1):29285. doi: 10.1038/s41598-025-13447-9.


DOI:10.1038/s41598-025-13447-9
PMID:40784883
Abstract

Microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) require distinct treatment strategies and are associated with different prognoses, underscoring the importance of accurate differentiation. This study aims to develop a predictive model that combines radiomics and deep learning to effectively distinguish between MIA and IAC. In this retrospective study, 252 pathologically confirmed cases of ground-glass nodules (GGNs) were included, with 177 allocated to the training set and 75 to the testing set. Radiomics, 2D deep learning, and 3D deep learning models were constructed based on CT images. In addition, two fusion strategies were employed to integrate these modalities: early fusion, which concatenates features from all modalities prior to classification, and late fusion, which ensembles the output probabilities of the individual models. The predictive performance of all five models was evaluated using the area under the receiver operating characteristic curve (AUC), and DeLong's test was performed to compare differences in AUC between models. The radiomics model achieved an AUC of 0.794 (95% CI: 0.684-0.898), while the 2D and 3D deep learning models achieved AUCs of 0.754 (95% CI: 0.594-0.882) and 0.847 (95% CI: 0.724-0.945), respectively, in the testing set. Among the fusion models, the late fusion strategy demonstrated the highest predictive performance, with an AUC of 0.898 (95% CI: 0.784-0.962), outperforming the early fusion model, which achieved an AUC of 0.857 (95% CI: 0.731-0.936). Although the differences were not statistically significant, the late fusion model yielded the highest numerical values for diagnostic accuracy, sensitivity, and specificity across all models. The fusion of radiomics and deep learning features shows potential in improving the differentiation of MIA and IAC in GGNs. The late fusion strategy demonstrated promising results, warranting further validation in larger, multicenter studies.

摘要

微浸润腺癌(MIA)和浸润性腺癌(IAC)需要不同的治疗策略,且预后不同,这凸显了准确鉴别诊断的重要性。本研究旨在开发一种结合放射组学和深度学习的预测模型,以有效区分MIA和IAC。在这项回顾性研究中,纳入了252例经病理证实的磨玻璃结节(GGN)病例,其中177例分配到训练集,75例分配到测试集。基于CT图像构建了放射组学、二维深度学习和三维深度学习模型。此外,采用了两种融合策略来整合这些模型:早期融合,即在分类前将所有模型的特征串联起来;晚期融合,即将各个模型的输出概率进行整合。使用受试者操作特征曲线下面积(AUC)评估所有五个模型的预测性能,并进行德龙检验以比较各模型之间AUC的差异。在测试集中,放射组学模型的AUC为0.794(95%CI:0.684 - 0.898),二维和三维深度学习模型的AUC分别为0.754(95%CI:0.594 - 0.882)和0.847(95%CI:0.724 - 0.945)。在融合模型中,晚期融合策略表现出最高的预测性能,AUC为0.898(95%CI:0.784 - 0.962),优于早期融合模型,早期融合模型的AUC为0.857(95%CI:0.731 - 0.936)。尽管差异无统计学意义,但晚期融合模型在所有模型中的诊断准确性、敏感性和特异性的数值最高。放射组学和深度学习特征的融合在改善GGN中MIA和IAC的鉴别诊断方面显示出潜力。晚期融合策略显示出有前景的结果,值得在更大规模的多中心研究中进一步验证。

相似文献

[1]
Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sci Rep. 2025-8-11

[2]
The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study.

Technol Cancer Res Treat. 2024

[3]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

[4]
2.5D deep learning radiomics and clinical data for predicting occult lymph node metastasis in lung adenocarcinoma.

BMC Med Imaging. 2025-7-1

[5]
Nomogram based on radiomics and CT features for predicting visceral pleural invasion of invasive adenocarcinoma ≤ 2 cm: A multicenter study.

Eur J Radiol. 2025-6-12

[6]
Deep learning radiomics fusion model to predict visceral pleural invasion of clinical stage IA lung adenocarcinoma: a multicenter study.

J Cardiothorac Surg. 2025-5-28

[7]
Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.

Acad Radiol. 2025-8

[8]
Deep learning model using CT images for longitudinal prediction of benign and malignant ground-glass nodules.

Eur J Radiol. 2025-9

[9]
Predicting brain metastases in EGFR-positive lung adenocarcinoma patients using pre-treatment CT lung imaging data.

Eur J Radiol. 2025-9

[10]
Predicting High-Grade Patterns in Stage I Solid Lung Adenocarcinoma: A Study of 371 Patients Using Refined Radiomics and Deep Learning-Guided CatBoost Classifier.

Technol Cancer Res Treat. 2024

本文引用的文献

[1]
Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.

J Imaging. 2025-2-15

[2]
Prevalence of invasive lung cancer in pure ground glass nodules less than 30 mm: A systematic review.

Eur J Cancer. 2024-12

[3]
Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.

Acad Radiol. 2025-2

[4]
Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT.

J Nucl Med. 2024-4-1

[5]
Comparing three-dimensional and two-dimensional deep-learning, radiomics, and fusion models for predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based on CT imaging: a multicentre, retrospective, diagnostic study.

EClinicalMedicine. 2024-1-3

[6]
Predicting occult lymph node metastasis in solid-predominantly invasive lung adenocarcinoma across multiple centers using radiomics-deep learning fusion model.

Cancer Imaging. 2024-1-12

[7]
Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules.

Biomed Eng Online. 2023-11-30

[8]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[9]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[10]
Discrimination of ground-glass nodular lung adenocarcinoma pathological subtypes via transfer learning: A multicenter study.

Cancer Med. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索