Suppr超能文献

基于迁移学习的磨玻璃结节型肺腺癌病理亚型鉴别:一项多中心研究

Discrimination of ground-glass nodular lung adenocarcinoma pathological subtypes via transfer learning: A multicenter study.

作者信息

Fu Chun-Long, Yang Ze-Bin, Li Ping, Shan Kang-Fei, Wu Mei-Kang, Xu Jie-Ping, Ma Chi-Jun, Luo Fang-Hong, Zhou Long, Sun Ji-Hong, Zhao Fen-Hua

机构信息

Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China.

Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Cancer Med. 2023 Sep;12(18):18460-18469. doi: 10.1002/cam4.6402. Epub 2023 Sep 18.

Abstract

BACKGROUND

The surgical approach and prognosis for invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA) of the lung differ. However, they both manifest as identical ground-glass nodules (GGNs) in computed tomography images, and no effective method exists to discriminate them.

METHODS

We developed and validated a three-dimensional (3D) deep transfer learning model to discriminate IAC from MIA based on CT images of GGNs. This model uses a 3D medical image pre-training model (MedicalNet) and a fusion model to build a classification network. Transfer learning was utilized for end-to-end predictive modeling of the cohort data of the first center, and the cohort data of the other two centers were used as independent external validation data. This study included 999 lung GGN images of 921 patients pathologically diagnosed with IAC or MIA at three cohort centers.

RESULTS

The predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). The model had high diagnostic efficacy for the training and validation groups (accuracy: 89%, sensitivity: 95%, specificity: 84%, and AUC: 95% in the training group; accuracy: 88%, sensitivity: 84%, specificity: 93%, and AUC: 92% in the internal validation group; accuracy: 83%, sensitivity: 83%, specificity: 83%, and AUC: 89% in one external validation group; accuracy: 78%, sensitivity: 80%, specificity: 77%, and AUC: 82% in the other external validation group).

CONCLUSIONS

Our 3D deep transfer learning model provides a noninvasive, low-cost, rapid, and reproducible method for preoperative prediction of IAC and MIA in lung cancer patients with GGNs. It can help clinicians to choose the optimal surgical strategy and improve the prognosis of patients.

摘要

背景

肺浸润性腺癌(IAC)和微浸润性腺癌(MIA)的手术方式和预后不同。然而,它们在计算机断层扫描图像中均表现为相同的磨玻璃结节(GGN),且尚无有效的鉴别方法。

方法

我们开发并验证了一种基于GGN的CT图像将IAC与MIA进行鉴别的三维(3D)深度迁移学习模型。该模型使用3D医学图像预训练模型(MedicalNet)和融合模型构建分类网络。迁移学习用于第一个中心队列数据的端到端预测建模,另外两个中心的队列数据用作独立的外部验证数据。本研究纳入了三个队列中心921例经病理诊断为IAC或MIA的患者的999张肺GGN图像。

结果

使用受试者操作特征曲线下面积(AUC)评估模型的预测性能。该模型对训练组和验证组具有较高的诊断效能(训练组:准确率89%,敏感性95%,特异性84%,AUC 95%;内部验证组:准确率88%,敏感性84%,特异性93%,AUC 92%;一个外部验证组:准确率83%,敏感性83%,特异性83%,AUC 89%;另一个外部验证组:准确率78%,敏感性80%,特异性77%,AUC 82%)。

结论

我们的3D深度迁移学习模型为GGN型肺癌患者术前预测IAC和MIA提供了一种无创、低成本、快速且可重复的方法。它可以帮助临床医生选择最佳手术策略并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e17d/10557850/937f9e8a8460/CAM4-12-18460-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验