Suppr超能文献

解决视觉模拟量表中的报告异质性:一种使用锚定 vignettes 的双指标模型方法。

Addressing reporting heterogeneity in visual analogue scales: a double-index model approach using anchoring vignettes.

作者信息

Huang Zhiyong, Kämpfen Fabrice

机构信息

SouthWestern University of Finance and Economics, Chengdu, China.

School of Economics, University College Dublin, Dublin, Ireland.

出版信息

Health Qual Life Outcomes. 2025 Aug 11;23(1):77. doi: 10.1186/s12955-025-02407-6.

Abstract

In this study, we propose several methods to account for reporting heterogeneity in self-reported data coming from Visual Analogue Scales (VAS) using corresponding VAS-based anchoring vignettes. Though widely used as a measurement tool in many disciplines, VAS may suffer from reporting heterogeneity. Such reporting heterogeneity and potential solutions to solve this problem in the context of VAS measures have not yet been addressed in the literature. Using VAS-based anchoring vignettes and standard vignettes assumptions, we show how double-index models can be used to address reporting heterogeneity in VAS. We then apply our methods to real data assessing reporting heterogeneity in VAS-measured Quality of Life (QoL) among students in Switzerland. We show that the findings of previous studies showing positive associations between being a female and QoL might be entirely driven by reporting heterogeneity.

摘要

在本研究中,我们提出了几种方法,以利用基于视觉模拟量表(VAS)的相应锚定 vignettes 来解释来自 VAS 的自我报告数据中的报告异质性。尽管 VAS 在许多学科中被广泛用作测量工具,但它可能存在报告异质性。这种报告异质性以及在 VAS 测量背景下解决该问题的潜在解决方案在文献中尚未得到探讨。利用基于 VAS 的锚定 vignettes 和标准 vignettes 假设,我们展示了如何使用双指标模型来解决 VAS 中的报告异质性。然后,我们将我们的方法应用于实际数据,以评估瑞士学生中 VAS 测量的生活质量(QoL)的报告异质性。我们表明,先前研究中显示女性与 QoL 之间存在正相关的结果可能完全是由报告异质性驱动的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验