Suppr超能文献

基于常规实验室指标的机器学习模型预测小儿重症川崎病

Routine Laboratory Markers-Based Machine Learning Model for Predicting Severe Kawasaki Disease in Pediatric Patients.

作者信息

Wu Meng, Chen Jinlong, Gao Ya, Chen Hongbing, Li Wei

机构信息

Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.

Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.

出版信息

J Inflamm Res. 2025 Aug 4;18:10545-10558. doi: 10.2147/JIR.S528341. eCollection 2025.

Abstract

OBJECTIVE

Severe Kawasaki disease (SKD) poses numerous risks. Early identification of SKD is crucial for precise pharmacological intervention, which can reduce the incidence of complications. This study introduces a novel machine learning approach for the early prediction of SKD in pediatric populations, utilizing routinely collected laboratory parameters.

METHODS

We extracted patients' age, sex, and 67 standard laboratory markers from the clinical records of 1,466 patients diagnosed with KD at the Children's Hospital of Nanjing Medical University. Using Lasso regression, we identified 15 critical predictors from the initial 69 candidates, demonstrating a significant impact on the accuracy of predictive outcomes. We forecasted the binary diagnosis of SKD or ordinary Kawasaki Disease (OKD) using 16 machine learning models, with model performance assessed through AUC-ROC, accuracy, F1 score, DCA, and calibration analysis.

RESULTS

Our study included 1,466 patients with KD, categorized into 1,286 cases of OKD and 180 cases of SKD. Both groups predominantly consisted of male. A significantly lower median age was observed in SKD patients (4.29 years) compared to the OKD group. In our comparative analysis of predictive models, the Gradient Boosting model (AUC 0.952) emerged as the most accurate, followed closely by Ada Boost (AUC 0.945), Random Forest (AUC 0.944), CatBoost (AUC 0.957), and Naive Bayes (AUC 0.951). The GBC model achieved a high accuracy of 0.925, with a sensitivity of 0.628, specificity of 0.967, precision of 0.740, and an F1 score of 0.666, underscoring its robustness in distinguishing between the two KD subgroups. Our analysis identified 15 independent predictors, including absolute basophil count and conjugated bilirubin, that significantly enhanced the diagnostic accuracy of SKD.

CONCLUSION

Our most effective model demonstrates commendable performance in differentiating OKD from SKD. This advancement empowers pediatric clinicians to make swift clinical decisions, facilitating prompt therapeutic intervention and preventing the onset of severe complications.

摘要

目的

重度川崎病(SKD)存在诸多风险。早期识别SKD对于精准的药物干预至关重要,这可以降低并发症的发生率。本研究引入了一种新颖的机器学习方法,利用常规收集的实验室参数对儿科人群中的SKD进行早期预测。

方法

我们从南京医科大学附属儿童医院1466例诊断为川崎病(KD)的患者临床记录中提取了患者的年龄、性别和67项标准实验室指标。使用套索回归,我们从最初的69个候选指标中确定了15个关键预测指标,这些指标对预测结果的准确性有显著影响。我们使用16种机器学习模型预测SKD或普通川崎病(OKD)的二元诊断,并通过AUC-ROC、准确性、F1分数、DCA和校准分析评估模型性能。

结果

我们的研究纳入了1466例KD患者,分为1286例OKD和180例SKD。两组主要为男性。与OKD组相比,SKD患者的中位年龄显著更低(4.29岁)。在我们对预测模型的比较分析中,梯度提升模型(AUC 0.952)最为准确,其次是Ada Boost(AUC 0.945)、随机森林(AUC 0.944)、CatBoost(AUC 0.957)和朴素贝叶斯(AUC 0.951)。GBC模型的准确率高达0.925,敏感性为0.628,特异性为0.967,精确率为0.740,F1分数为0.666,突出了其在区分两个KD亚组方面的稳健性。我们的分析确定了15个独立预测指标,包括绝对嗜碱性粒细胞计数和结合胆红素,这些指标显著提高了SKD的诊断准确性。

结论

我们最有效的模型在区分OKD和SKD方面表现出值得称赞的性能。这一进展使儿科临床医生能够迅速做出临床决策,便于及时进行治疗干预并预防严重并发症的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6f/12333634/38eb2ad67c31/JIR-18-10545-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验