Suppr超能文献

整合单细胞和外泌体多组学揭示SCNN1A和EFNA1作为卵巢癌转移的非侵入性生物标志物和驱动因素。

Integrative single-cell and exosomal multi-omics uncovers SCNN1A and EFNA1 as non-invasive biomarkers and drivers of ovarian cancer metastasis.

作者信息

Tang Liping, Pang Dong, Wang Chengbang, Lin Jiali, Chen Shaohua, Wu Jiangchun, Cui Junqi

机构信息

Department of Rehabilitation Medicine, Pudong New District Gongli Hospital, Shanghai, China.

Department of Obstetrics and Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China.

出版信息

Front Immunol. 2025 Jul 25;16:1630794. doi: 10.3389/fimmu.2025.1630794. eCollection 2025.

Abstract

BACKGROUND

Ovarian cancer (OV) is the deadliest gynecologic malignancy owing to its late diagnosis and high metastatic propensity. Current biomarkers lack sufficient sensitivity and specificity for the detection of early-stage cancer. To address this gap, we integrated single-cell transcriptomic profiling of tumor tissues with analysis of circulating exosomal RNA, aiming to uncover candidate markers that reflect tumor heterogeneity and metastatic potential and that may serve as sensitive, non-invasive diagnostics.

METHODS

We integrated single-cell RNA sequencing (scRNA-seq) data from primary tumors and metastatic lesions with bulk tissue transcriptomes and plasma-derived exosomal RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) shared across tumor cells, metastatic subpopulations, and exosomes were identified through intersection analysis. Candidate genes were validated in clinical specimens using qPCR and immunohistochemistry. We then applied ten machine learning algorithm to exosomal transcriptomic data to evaluate diagnostic performance and identify the optimal classifier. Tumor cell differentiation states were evaluated using CytoTRACE, and intercellular communication was analyzed with CellChat.

RESULTS

Intersection analysis highlighted 52 overlapping DEGs, of which SCNN1A and EFNA1 emerged as the top prognostic indicators. Both genes were significantly upregulated in tumor tissues, metastatic foci, and plasma exosomes ( < 0.01). The exosome-based Adaboost model had an area under the curve of 0.955 in an independent test cohort. Single-cell subcluster analyses revealed high SCNN1A/EFNA1 expression correlated with stem-like differentiation states and enriched pathways associated with immune evasion and adhesion. CellChat analysis demonstrated that highly differentiated tumor cells extensively engaged with fibroblasts and endothelial cells, implying their role in niche formation.

CONCLUSIONS

By coupling single-cell, bulk tissue, and exosomal transcriptomics, we elucidated the key molecular drivers of OV metastasis and established SCNN1A and EFNA1 as promising non-invasive biomarkers. This multi-omics framework provides an effective strategy for early detection and a better understanding of metastatic progression in OV.

摘要

背景

卵巢癌(OV)因其诊断较晚和高转移倾向,是最致命的妇科恶性肿瘤。目前的生物标志物在早期癌症检测中缺乏足够的敏感性和特异性。为了填补这一空白,我们将肿瘤组织的单细胞转录组分析与循环外泌体RNA分析相结合,旨在发现反映肿瘤异质性和转移潜力且可能用作敏感、非侵入性诊断的候选标志物。

方法

我们将来自原发性肿瘤和转移灶的单细胞RNA测序(scRNA-seq)数据与大量组织转录组和血浆来源的外泌体RNA测序(RNA-seq)进行整合。通过交集分析确定在肿瘤细胞、转移亚群和外泌体中共享的差异表达基因(DEG)。使用qPCR和免疫组织化学在临床标本中验证候选基因。然后我们将十种机器学习算法应用于外泌体转录组数据,以评估诊断性能并确定最佳分类器。使用CytoTRACE评估肿瘤细胞分化状态,并使用CellChat分析细胞间通讯。

结果

交集分析突出了52个重叠的DEG,其中SCNN1A和EFNA1成为顶级预后指标。这两个基因在肿瘤组织、转移灶和血浆外泌体中均显著上调(<0.01)。基于外泌体的Adaboost模型在独立测试队列中的曲线下面积为0.955。单细胞亚群分析显示,高SCNN1A/EFNA1表达与干细胞样分化状态以及与免疫逃逸和黏附相关的富集途径相关。CellChat分析表明,高度分化的肿瘤细胞与成纤维细胞和内皮细胞广泛相互作用,暗示它们在生态位形成中的作用。

结论

通过结合单细胞、大量组织和外泌体转录组学,我们阐明了OV转移的关键分子驱动因素,并将SCNN1A和EFNA1确立为有前景的非侵入性生物标志物。这种多组学框架为OV的早期检测和更好地理解转移进展提供了一种有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18e/12331593/975c02ebdddf/fimmu-16-1630794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验