文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鳞状细胞癌梭形细胞变体的生存结果和预后因素:对SEER数据库中1086例患者的机器学习分析

Survival outcomes and prognostic factors in spindle cell variants of squamous cell carcinoma: a machine learning analysis of 1086 patients from the SEER database.

作者信息

Obeidat Akef, Arabi Tarek Ziad, Sabbah Belal Nedal, Alaswad Marwan, Mariyam Nida, Albitar Mohammed Hady

机构信息

College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.

出版信息

Ann Med Surg (Lond). 2025 Jun 25;87(8):4765-4769. doi: 10.1097/MS9.0000000000003482. eCollection 2025 Aug.


DOI:10.1097/MS9.0000000000003482
PMID:40787521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12333765/
Abstract

BACKGROUND: Spindle cell variants of squamous cell carcinoma represent rare and aggressive malignancies with poorly understood prognostic factors and treatment outcomes. This study leverages machine learning approaches alongside traditional statistical methods to analyze a large cohort from the Surveillance, Epidemiology, and End Results (SEER) database. METHODS: We conducted a retrospective analysis of 1086 patients with spindle cell variants of squamous cell carcinoma from the SEER database. Traditional Cox regression and machine learning approaches, including random survival forests (RSF), gradient boosted survival (GBSurv), and DeepSurv models, were employed to identify prognostic factors and predict survival outcomes. Model performance was evaluated using concordance indices and decision curve analysis. RESULTS: Of the 1086 patients included in the analysis, patients were diagnosed with spindle cell variants of squamous cell carcinoma between 1992 and 2021. Median age was 70 years (IQR: 60-77). Primary tumor sites included larynx (21.4%), lung and bronchus (20.2%), and tongue (10.7%). 32.0% had localized disease, 25.4% had regional disease, and 17.2% had distant disease, with 25.4% having unknown stage. Treatment modalities included radiation therapy in 51.9% and chemotherapy in 30.7% of patients. In the multivariate Cox model, kidney and renal pelvis tumors showed the highest risk (HR: 6.28, 95% CI: 2.26-17.45, < 0.001), followed by urinary bladder (HR: 2.72, 95% CI: 1.56-4.74, < 0.001) and lung/bronchus sites (HR: 1.94, 95% CI: 1.51-2.50, < 0.001). The RSF model demonstrated superior discriminative ability (C-index: 0.733, 95% CI: 0.680-0.784) compared to GBSurv (C-index: 0.294, 95% CI: 0.239-0.351) and DeepSurv (C-index: 0.314, 95% CI: 0.255-0.378) approaches. CONCLUSIONS: The findings suggest that anatomical site and disease stage significantly influence survival, while current treatment modalities show limited impact on outcomes. The superior performance of the RSF model indicates potential value in using machine learning for risk stratification in clinical practice.

摘要

背景:鳞状细胞癌的梭形细胞变体是罕见且侵袭性强的恶性肿瘤,其预后因素和治疗结果尚不清楚。本研究利用机器学习方法和传统统计方法,对监测、流行病学和最终结果(SEER)数据库中的一个大型队列进行分析。 方法:我们对SEER数据库中1086例鳞状细胞癌梭形细胞变体患者进行了回顾性分析。采用传统的Cox回归和机器学习方法,包括随机生存森林(RSF)、梯度增强生存(GBSurv)和深度生存(DeepSurv)模型,来识别预后因素并预测生存结果。使用一致性指数和决策曲线分析评估模型性能。 结果:在纳入分析的1086例患者中,患者在1992年至2021年期间被诊断为鳞状细胞癌的梭形细胞变体。中位年龄为70岁(四分位间距:60 - 77岁)。原发肿瘤部位包括喉(21.4%)、肺和支气管(20.2%)以及舌(10.7%)。32.0%为局限性疾病,25.4%为区域性疾病,17.2%为远处疾病,25.4%分期未知。治疗方式包括51.9%的患者接受放射治疗,30.7%的患者接受化疗。在多变量Cox模型中,肾脏和肾盂肿瘤显示出最高风险(风险比:6.28,95%置信区间:2.26 - 17.45,P < 0.001),其次是膀胱(风险比:2.72,95%置信区间:1.56 - 4.74,P < 0.001)和肺/支气管部位(风险比:1.94,95%置信区间:1.51 - 2.50,P < 0.001)。与GBSurv(一致性指数:0.294,95%置信区间:0.239 - 0.351)和DeepSurv(一致性指数:0.314,95%置信区间:0.255 - 0.378)方法相比,RSF模型表现出更好的判别能力(一致性指数:0.733,95%置信区间:0.680 - 0.784)。 结论:研究结果表明,解剖部位和疾病分期对生存有显著影响,而目前的治疗方式对结果的影响有限。RSF模型的优越性能表明在临床实践中使用机器学习进行风险分层具有潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/12333765/08feed0d04c2/ms9-87-4765-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/12333765/e6df29f91fe9/ms9-87-4765-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/12333765/08feed0d04c2/ms9-87-4765-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/12333765/e6df29f91fe9/ms9-87-4765-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23b/12333765/08feed0d04c2/ms9-87-4765-g002.jpg

相似文献

[1]
Survival outcomes and prognostic factors in spindle cell variants of squamous cell carcinoma: a machine learning analysis of 1086 patients from the SEER database.

Ann Med Surg (Lond). 2025-6-25

[2]
Comparison of Random Survival Forest Based-Overall Survival With Deep Learning and Cox Proportional Hazard Models in HER-2-Positive HR-Negative Breast Cancer.

Cancer Rep (Hoboken). 2025-7

[3]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[4]
Competing risk and random survival forest models for predicting survival in post-resection elderly stage I-III colorectal cancer patients.

Sci Rep. 2025-7-7

[5]
Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort.

J Cancer Res Clin Oncol. 2023-10

[6]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[7]
A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database.

Front Immunol. 2025-6-30

[8]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[9]
Neck dissection of cN0 maxillary oral squamous cell carcinoma: A study based on SEER database.

J Stomatol Oral Maxillofac Surg. 2024-9

[10]
A novel staging system based on deep learning for overall survival in patients with esophageal squamous cell carcinoma.

J Cancer Res Clin Oncol. 2023-9

本文引用的文献

[1]
Random survival forest for predicting the combined effects of multiple physiological risk factors on all-cause mortality.

Sci Rep. 2024-7-6

[2]
The STROCSS 2024 guideline: strengthening the reporting of cohort, cross-sectional, and case-control studies in surgery.

Int J Surg. 2024-6-1

[3]
Use of survival support vector machine combined with random survival forest to predict the survival of nasopharyngeal carcinoma patients.

Transl Cancer Res. 2023-12-31

[4]
Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach.

J Multidiscip Healthc. 2023-6-26

[5]
Artificial intelligence assists precision medicine in cancer treatment.

Front Oncol. 2023-1-4

[6]
Spindle Cell Squamous Cell Carcinoma of the Scalp Treated With Pembrolizumab Cisplatin and 5-Fluorouracil.

Cureus. 2021-12-7

[7]
Clinicopathological characteristics and prognosis of pulmonary spindle cell carcinoma (PSCC): a population-based retrospective study.

Ann Palliat Med. 2021-4

[8]
Site-Specific and Targeted Therapy Based on Molecular Profiling by Next-Generation Sequencing for Cancer of Unknown Primary Site: A Nonrandomized Phase 2 Clinical Trial.

JAMA Oncol. 2020-12-1

[9]
The use of machine learning in rare diseases: a scoping review.

Orphanet J Rare Dis. 2020-6-9

[10]
Strengths and limitations of large databases in lung cancer radiation oncology research.

Transl Lung Cancer Res. 2019-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索