Haloi Nandan, Howard Rebecca J, Lindahl Erik
Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
PLoS Comput Biol. 2025 Aug 11;21(8):e1013367. doi: 10.1371/journal.pcbi.1013367. eCollection 2025 Aug.
Resolving protein-ligand interactions in atomic detail is key to understanding how small molecules regulate macromolecular function. Although recent breakthroughs in cryogenic electron microscopy (cryo-EM) have enabled high-quality reconstruction of numerous complex biomolecules, the resolution of bound ligands is often relatively poor. Furthermore, methods for building and refining molecular models into cryo-EM maps have largely focused on proteins and may not be optimized for the diverse properties of small-molecule ligands. Here, we present an approach that integrates artificial intelligence (AI) with cryo-EM density-guided simulations to fit ligands into experimental maps. Using three inputs: 1) a protein amino acid sequence, 2) a ligand specification, and 3) an experimental cryo-EM map, we validated our approach on a set of biomedically relevant protein-ligand complexes including kinases, GPCRs, and solute transporters, none of which were present in the AI training data. In cases for which AI was not sufficient to predict experimental poses outright, integration of flexible fitting into molecular dynamics simulations improved ligand model-to-map cross-correlation relative to the deposited structure from 40-71% to 82-95%. This work offers a straightforward pipeline for integrating AI and density-guided simulations to model building in cryo-EM maps of ligand-protein complexes.
在原子细节上解析蛋白质 - 配体相互作用是理解小分子如何调节大分子功能的关键。尽管低温电子显微镜(cryo-EM)最近取得的突破使得众多复杂生物分子能够进行高质量重建,但结合配体的分辨率往往相对较差。此外,将分子模型构建和细化到cryo-EM图谱中的方法主要集中在蛋白质上,可能并未针对小分子配体的多样性质进行优化。在此,我们提出一种将人工智能(AI)与cryo-EM密度引导模拟相结合的方法,以便将配体拟合到实验图谱中。利用三个输入:1)蛋白质氨基酸序列、2)配体规格说明以及3)实验cryo-EM图谱,我们在一组与生物医学相关的蛋白质 - 配体复合物(包括激酶、GPCR和溶质转运蛋白)上验证了我们的方法,这些复合物均未出现在AI训练数据中。在AI不足以直接预测实验构象的情况下,将柔性拟合整合到分子动力学模拟中,相对于已存入的结构,配体模型与图谱的互相关从40 - 71%提高到了82 - 95%。这项工作提供了一个直接的流程,用于整合AI和密度引导模拟,以在配体 - 蛋白质复合物的cryo-EM图谱中进行模型构建。