Suppr超能文献

通过机器学习增强的恒电位框架观察锂金属-电解质界面处的枝晶形成。

Observation of dendrite formation at Li metal-electrolyte interface by a machine-learning enhanced constant potential framework.

作者信息

Hu Taiping, Huang Haichao, Zhou Guobing, Wang Xinyan, Zhu Jiaxin, Cheng Zheng, Fu Fangjia, Wang Xiaoxu, Dai Fuzhi, Yu Kuang, Xu Shenzhen

机构信息

Beijing Key Laboratory of Theory and Technology for Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, People's Republic of China.

AI for Science Institute, Beijing, People's Republic of China.

出版信息

Nat Commun. 2025 Aug 11;16(1):7379. doi: 10.1038/s41467-025-62824-5.

Abstract

Uncontrollable dendrites growth during electrochemical cycles leads to low Coulombic efficiency and critical safety issues in Li metal batteries. Hence, a comprehensive understanding of the dendrite formation mechanism is essential for further enhancing the performance of Li metal batteries. Machine learning accelerated molecular dynamics simulations can provide atomic-scale resolution for various key processes at an ab-initio level accuracy. However, traditional molecular dynamics simulation tools hardly capture Li electrochemical depositions, due to lack of an electrochemical constant potential condition. In this work, we propose a constant potential approach that combines a machine learning force field with the charge equilibration method to reveal the dynamic process of dendrites nucleation at Li metal anode surfaces. Our simulations show that inhomogeneous Li depositions, following Li aggregations in amorphous inorganic components of solid electrolyte interphases, can initiate dendrites nucleation. Our study provides microscopic insights for Li dendrites formations in Li metal anodes. More importantly, we present an efficient and accurate simulation method for modeling realistic constant potential conditions, which holds considerable potential for broader applications in modeling complex electrochemical interfaces.

摘要

在电化学循环过程中,锂金属电池中不可控的枝晶生长会导致低库仑效率和严重的安全问题。因此,全面了解枝晶形成机制对于进一步提高锂金属电池的性能至关重要。机器学习加速的分子动力学模拟能够在从头算精度水平上为各种关键过程提供原子尺度分辨率。然而,由于缺乏电化学恒电位条件,传统的分子动力学模拟工具很难捕捉锂的电化学沉积过程。在这项工作中,我们提出了一种恒电位方法,该方法将机器学习力场与电荷平衡方法相结合,以揭示锂金属阳极表面枝晶成核的动态过程。我们的模拟表明,在固体电解质界面的无定形无机成分中锂发生聚集后,不均匀的锂沉积会引发枝晶成核。我们的研究为锂金属阳极中锂枝晶的形成提供了微观见解。更重要的是,我们提出了一种用于模拟实际恒电位条件的高效且准确的模拟方法,该方法在模拟复杂电化学界面方面具有广阔的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e07/12340105/b60c50f5aa12/41467_2025_62824_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验