Zhu Jianjun, Hirl Regina T, Baca Cabrera Juan C, Schäufele Rudi, Schnyder Hans
Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, 85354, Freising-Weihenstephan, Germany.
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
Plant Methods. 2025 Aug 11;21(1):111. doi: 10.1186/s13007-025-01431-3.
Quantitative understanding of plant carbon (C) metabolism by CO/CO-labelling studies requires absence (or knowledge) of C-isotopic contamination artefacts during tracer application and sample processing. Surprisingly, this concern has not been addressed systematically and comprehensively yet is especially crucial in experiments at different atmospheric CO concentrations ([CO]), when experimental protocols require frequent access to the labelling chambers. Here, we used a plant growth chamber-based CO/CO gas exchange-facility to address this topic. The facility comprised four independent units, with two chambers routinely operated in parallel under identical conditions except for the isotopic composition of CO supplied to them (δC -43.5‰ versus -5.6‰). In this setup, dδC (the measurements-based δC-difference between matching samples X collected from the parallel chambers) is expected to equal dδC (the predictable, non-contaminated δC-difference ), if sample-C is completely derived from the contrasting CO sources. Accordingly, contamination (f) was determined as f = 1- dδC/dδC in this experimental setup. Determinations were made for biomass fractions, water-soluble carbohydrate (WSC) components and dark respiration of Lolium perenne (perennial ryegrass) stands following growth for ∼9 weeks at 200, 400 or 800 µmol mol CO, with a terminal two weeks-long period of extensive experimental disturbance of the chambers.
Contamination was small and similar (average 3.3% ±0.9% SD, n = 18) for shoot and root biomass and WSC fractions (fructan, sucrose, glucose, fructose) at every [CO] level. [CO] had no significant effect on contamination of these samples. There was no evidence for any contamination of WSC components during extraction, separation and analysis. At 200 and 400 µmol mol CO, contamination of respiratory CO was close to that of biomass- and WSC-C, suggesting it originated primarily from in vivo-contaminated respiratory substrate. Surprisingly, we found no evidence of contamination of respiratory CO at 800 µmol mol CO. Overall, contamination likely resulted overwhelmingly from photosynthetic fixation of extraneous contaminating CO which entered chambers primarily during daytime experimental activities.
The labelling facility enables months-long, quantitative CO/CO-labelling of large numbers of plants with accuracy and precision across contrasts of [CO], empowering eco-physiological study of climate change scenarios. Effective protocols for contamination avoidance are discussed.
通过¹³CO₂/¹²CO₂标记研究对植物碳(C)代谢进行定量理解,需要在示踪剂应用和样品处理过程中不存在(或了解)碳同位素污染假象。令人惊讶的是,这一问题尚未得到系统全面的解决,而在不同大气CO₂浓度([CO₂])的实验中,这一问题尤为关键,因为实验方案要求频繁进入标记室。在此,我们使用基于植物生长室的¹³CO₂/¹²CO₂气体交换设施来解决这一问题。该设施包括四个独立单元,其中两个室在相同条件下并行常规运行,除了供应给它们的CO₂的同位素组成不同(δ¹³C -43.5‰对 -5.6‰)。在这种设置下,如果样品碳完全来自对比的CO₂源,预期dδ¹³C(从平行室收集的匹配样品X之间基于测量的δ¹³C差异)将等于dδ¹³C(可预测的、未受污染的δ¹³C差异)。因此,在该实验设置中,污染(f)被确定为f = 1 - dδ¹³C/dδ¹³C。对多年生黑麦草在200、400或800 μmol mol⁻¹ CO₂浓度下生长约9周后,进行了生物量组分、水溶性碳水化合物(WSC)成分和暗呼吸的测定,并在最后为期两周的时间里对室进行了广泛的实验干扰。
在每个[CO₂]水平下,地上部和根部生物量以及WSC组分(果聚糖、蔗糖、葡萄糖、果糖)的污染都很小且相似(平均3.3% ±0.9%标准差,n = 18)。[CO₂]对这些样品的污染没有显著影响。在提取、分离和分析过程中,没有证据表明WSC成分受到任何污染。在200和400 μmol mol⁻¹ CO₂浓度下,呼吸CO₂的污染与生物量和WSC-C的污染接近,表明其主要源于体内受污染的呼吸底物。令人惊讶的是,我们发现在800 μmol mol⁻¹ CO₂浓度下没有呼吸CO₂受污染的证据。总体而言,污染很可能主要源于外部污染CO₂的光合固定作用,这些污染CO₂主要在白天实验活动期间进入室中。
该标记设施能够在长达数月的时间里,对大量植物进行准确且精确的¹³CO₂/¹²CO₂标记,跨越[CO₂]的不同水平,为气候变化情景的生态生理研究提供了有力支持。文中还讨论了有效的避免污染方案。