Ghosh Pintu, Maiti Sudip, Gunawan Nina, Pal Bikiran, Ghosh Ankan, Bissember Alex C, Maiti Debabrata
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
Angew Chem Int Ed Engl. 2025 Aug 11:e202509809. doi: 10.1002/anie.202509809.
Cross-electrophile coupling (XEC) reactions that forge C(sp)─C(sp) bonds have received considerable attention due to the vast libraries of commercially available organohalides. However, the incorporation of ubiquitous aryl chlorides remains a challenge due to the slow rate of oxidative addition of metal catalysts to these electrophiles relative to iodide and bromide derivatives. This study reports a simple metallaphotoredox-catalyzed C(sp)─C(sp) cross-electrophile coupling (XEC) method for the selective coupling of a broad range of aryl chlorides and alkyl halides. By design, this methodology exploits the enabling interplay of a bidentate 2-(1H-imidazol-2-yl)pyridine ligand, incorporating the strong σ-donor capacity of a 1H-imidazole moiety with the moderate π-acceptor capacity of a pyridine unit. The synergy provided by these modular components allowed for the electronic requirements of elementary steps to be accommodated, such as the synchronous integration of alkyl radical generation (typically relatively fast) and oxidative addition of low valent nickel species to aryl chlorides (often relatively slow). This protocol enabled the efficient late-stage diversification of the drugs Me-fenofibrate, indomethacin, and etoricoxib to enhance their sp-rich complexity. Using an equimolar ratio of substrates, this methodology facilitated a decagram XEC in continuous flow, showcasing the applicability of the method for large scale synthesis.
由于存在大量可商购的有机卤化物,形成C(sp)─C(sp)键的交叉亲电偶联(XEC)反应受到了广泛关注。然而,由于金属催化剂对这些亲电试剂的氧化加成速率相对于碘化物和溴化物衍生物较慢,因此将普遍存在的芳基氯化物纳入反应仍具有挑战性。本研究报告了一种简单的金属光氧化还原催化的C(sp)─C(sp)交叉亲电偶联(XEC)方法,用于多种芳基氯化物和烷基卤化物的选择性偶联。通过设计,该方法利用了双齿2-(1H-咪唑-2-基)吡啶配体的协同作用,该配体结合了1H-咪唑部分的强σ供体能力和吡啶单元的适度π受体能力。这些模块化组件提供的协同作用使得能够满足基本步骤的电子要求,例如烷基自由基生成(通常相对较快)与低价镍物种对芳基氯化物的氧化加成(通常相对较慢)的同步整合。该方案实现了药物美非诺贝特、吲哚美辛和依托考昔的高效后期多样化,以增强其富含sp的复杂性。使用等摩尔比的底物,该方法在连续流中促进了十克规模的XEC反应,并展示了该方法在大规模合成中的适用性。