Suppr超能文献

用于手术场景理解的人工智能:系统评价与报告质量的Meta分析

Artificial Intelligence for Surgical Scene Understanding: A Systematic Review and Reporting Quality Meta-Analysis.

作者信息

Carstens Matthias, Vasisht Shubha, Zhang Zheyuan, Barbur Iulia, Reinke Annika, Maier-Hein Lena, Hashimoto Daniel A, Kolbinger Fiona R

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.

出版信息

medRxiv. 2025 Jul 14:2025.07.12.25330122. doi: 10.1101/2025.07.12.25330122.

Abstract

Surgical scene understanding (SSU) describes the use of Artificial Intelligence (AI) to provide an understanding of visual components of surgical imaging data, such as laparoscopic surgery videos. While hundreds of publications report AI capabilities to identify instruments, anatomical structures, and other contextual data and testify potential for real-time support in the operating room, the clinical implementation of SSU remains limited. This systematic review and meta-analysis (registered in the PROSPERO database under CRD420251005301) assesses the current state and research gaps in computational SSU, focusing on data curation, model design, validation, uncertainty estimation, performance metrics, reporting quality, and clinical applicability. Studies were included if they analyzed intraoperative data from minimally invasive abdominal surgeries in humans, developed computational SSU methods, and reported trainable models with formal validation and performance metrics. A total of 188 studies from six literature databases were included. Most relied on small, single-center datasets, often from laparoscopic cholecystectomies, with limited metadata and topical diversity. Research was largely descriptive, with limited reporting on clinical relevance, limitations, code availability, and model uncertainty. Validation was often inadequate, typically relying on simple hold-out strategies, with limited testing on external datasets and purely technical validation approaches without any clinical expert involvement. Clinical translation was addressed in only eleven works. Overall, studies showed minimal progress toward real-world application. Our findings highlight the need for diverse, multi-institutional datasets, robust validation practices, and clinically driven development to unlock the full potential of SSU in surgical practice.

摘要

手术场景理解(SSU)描述了利用人工智能(AI)来理解手术成像数据的视觉组件,如腹腔镜手术视频。虽然数百篇出版物报道了AI识别器械、解剖结构和其他背景数据的能力,并证明了其在手术室提供实时支持的潜力,但SSU的临床应用仍然有限。本系统综述和荟萃分析(已在PROSPERO数据库中注册,注册号为CRD420251005301)评估了计算性SSU的现状和研究差距,重点关注数据整理、模型设计、验证、不确定性估计、性能指标、报告质量和临床适用性。如果研究分析了人类微创腹部手术的术中数据,开发了计算性SSU方法,并报告了经过正式验证和性能指标的可训练模型,则纳入该研究。共纳入了来自六个文献数据库的188项研究。大多数研究依赖于小型单中心数据集,通常来自腹腔镜胆囊切除术,元数据和主题多样性有限。研究大多是描述性的,对临床相关性、局限性、代码可用性和模型不确定性的报告有限。验证往往不足,通常依赖于简单的留出策略,对外部数据集的测试有限,且采用纯技术验证方法,没有任何临床专家参与。只有11项研究涉及临床转化。总体而言,研究在实际应用方面进展甚微。我们的研究结果强调需要多样化的多机构数据集、强大可靠的验证实践以及以临床为导向的开发,以释放SSU在手术实践中的全部潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5204/12338890/cf300090958e/nihpp-2025.07.12.25330122v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验