Suppr超能文献

医疗保健中模型开发与评估的交叉验证的实际考量与应用示例:教程

Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial.

作者信息

Wilimitis Drew, Walsh Colin G

机构信息

Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States.

出版信息

JMIR AI. 2023 Dec 18;2:e49023. doi: 10.2196/49023.

Abstract

Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial might improve the community's understanding of these important methods while catalyzing the modeling community to apply these guides directly in their work using the published code.

摘要

交叉验证仍然是开发和验证用于医疗保健的人工智能的一种常用方法。存在多种交叉验证的子类型。尽管已经发表了关于这种验证策略的教程,有些还带有应用示例,但我们在此展示一个实用教程,使用广泛可用的真实世界电子医疗保健数据集:重症监护医学信息集市三期(MIMIC-III),来比较多种形式的交叉验证。本教程探讨了诸如K折交叉验证和嵌套交叉验证等方法,突出了它们在两个常见预测建模用例中的优缺点:分类(死亡率)和回归(住院时间)。我们旨在为读者提供可重现的笔记本以及使用电子医疗保健数据进行建模的最佳实践。我们还描述了一系列有用的建议,因为我们证明了嵌套交叉验证减少了乐观偏差,但带来了额外的计算挑战。本教程可能会增进社区对这些重要方法的理解,同时促使建模社区直接将这些指南应用于他们使用已发布代码的工作中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8b/11041453/110651d77e60/ai_v2i1e49023_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验