Liu Shuang, Jiang Xiangyu, Zhang Jie, Zou Wei
School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
Med Biol Eng Comput. 2025 Aug 13. doi: 10.1007/s11517-025-03426-7.
Accurate segmentation of hard exudate in fundus images is crucial for early diagnosis of retinal diseases. However, hard exudate segmentation is still a challenge task for accurately detecting small lesions and precisely locating the boundaries of ambiguous lesions. In this paper, the longitudinal multi-scale fusion network (LMSF-Net) is proposed for accurate hard exudate segmentation in fundus images. In this network, an adjacent complementary correction module (ACCM) is proposed on the encoding path for complementary fusion between adjacent encoding features, and a progressive iterative fusion module (PIFM) is designed on the decoding path for fusion between adjacent decoding features. Furthermore, a spatial awareness fusion module (SAFM) is proposed at the end of the decoding path for calibration and aggregation of the two decoding outputs. The proposed method can improve segmentation results of hard exudates with different scales and shapes. The experimental results confirm the superiority of the proposed method for hard exudate segmentation with AUPR of 0.6954, 0.9017, and 0.6745 on the DDR, IDRID, and E-Ophtha EX datasets, respectively.
眼底图像中硬性渗出物的准确分割对于视网膜疾病的早期诊断至关重要。然而,硬性渗出物分割对于准确检测小病变以及精确确定模糊病变的边界仍然是一项具有挑战性的任务。本文提出了纵向多尺度融合网络(LMSF-Net)用于眼底图像中硬性渗出物的准确分割。在该网络中,在编码路径上提出了相邻互补校正模块(ACCM)用于相邻编码特征之间的互补融合,在解码路径上设计了渐进迭代融合模块(PIFM)用于相邻解码特征之间的融合。此外,在解码路径末尾提出了空间感知融合模块(SAFM)用于对两个解码输出进行校准和聚合。所提出的方法可以改善不同尺度和形状的硬性渗出物的分割结果。实验结果证实了所提出方法在硬性渗出物分割方面的优越性,在DDR、IDRID和E-Ophtha EX数据集上的AUPR分别为0.6954、0.9017和0.6745。