Suppr超能文献

眼睛中的边界:使用眼动追踪技术测量自然视频观看过程中的事件分割

Boundaries in the eyes: Measure event segmentation during naturalistic video watching using eye tracking.

作者信息

Li Jiashen, Chen Zhengyue, Hao Xin, Liu Wei

机构信息

Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China.

Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Nanhu Complex Building, 8Th Floor, 152 Luoyu Road, Wuhan, 430079, China.

出版信息

Behav Res Methods. 2025 Aug 12;57(9):255. doi: 10.3758/s13428-025-02790-4.

Abstract

During naturalistic information processing, individuals spontaneously segment their continuous experiences into discrete events, a phenomenon known as event segmentation. Traditional methods for assessing this process, which include subjective reports and neuroimaging techniques, often disrupt real-time segmentation or are costly and time-intensive. Our study investigated the potential of measuring event segmentation by recording and analyzing eye movements while participants viewed naturalistic videos. We collected eye movement data from healthy young adults as they watched commercial films (N = 104), or online Science, Technology, Engineering, and Mathematics (STEM) educational courses (N = 44). We analyzed changes in pupil size and eye movement speed near event boundaries and employed inter-subject correlation analysis (ISC) and hidden Markov models (HMM) to identify patterns indicative of event segmentation. We observed that both the speed of eye movements and pupil size dynamically responded to event boundaries, exhibiting heightened sensitivity to high-strength boundaries. Our analyses further revealed that event boundaries synchronized eye movements across participants. These boundaries can be effectively identified by HMM, yielding higher within-event similarity values and aligned with human-annotated boundaries. Importantly, HMM-based event segmentation metrics responded to experimental manipulations and predicted learning outcomes. This study provided a comprehensive computational framework for measuring event segmentation using eye-tracking. With the widespread accessibility of low-cost eye-tracking devices, the ability to measure event segmentation from eye movement data promises to deepen our understanding of this process in diverse real-world settings.

摘要

在自然主义信息处理过程中,个体将其连续的体验自发地分割成离散事件,这一现象被称为事件分割。评估这一过程的传统方法,包括主观报告和神经成像技术,往往会干扰实时分割,或者成本高昂且耗时。我们的研究调查了通过记录和分析参与者观看自然主义视频时的眼动来测量事件分割的潜力。我们收集了健康年轻成年人观看商业电影(N = 104)或在线科学、技术、工程和数学(STEM)教育课程(N = 44)时的眼动数据。我们分析了事件边界附近瞳孔大小和眼动速度的变化,并采用受试者间相关性分析(ISC)和隐马尔可夫模型(HMM)来识别表明事件分割的模式。我们观察到,眼动速度和瞳孔大小都会对事件边界做出动态反应,对高强度边界表现出更高的敏感性。我们的分析进一步表明,事件边界使参与者之间的眼动同步。这些边界可以通过HMM有效识别,产生更高的事件内相似性值,并与人工标注的边界一致。重要的是,基于HMM的事件分割指标对实验操作做出反应并预测学习结果。本研究提供了一个使用眼动追踪测量事件分割的全面计算框架。随着低成本眼动追踪设备的广泛普及,从眼动数据测量事件分割的能力有望加深我们在各种现实世界场景中对这一过程的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验