Iskandar Muda Azka Maula, Teğin Uğur
Opt Express. 2025 Feb 24;33(4):7852-7861. doi: 10.1364/OE.539374.
We present and study a nonlinear photonic neural network using photonic crystal fibers, leveraging femtosecond pulse supercontinuum generation for optical computing. Investigating its efficacy across machine learning tasks, we uncover the crucial impact of nonlinear pulse propagation dynamics on network performance. Our findings show that octave-spanning supercontinuum generation results in loss of dataset variety due to many-to-one mapping, and optimal performance requires balancing optical nonlinearity with dataset complexity. This study offers guidance for designing energy-efficient and high-performance photonic neural network architectures by explaining the interplay between nonlinear dynamics and optical computing.
我们展示并研究了一种使用光子晶体光纤的非线性光子神经网络,利用飞秒脉冲超连续谱产生进行光学计算。通过研究其在机器学习任务中的效能,我们发现非线性脉冲传播动力学对网络性能具有关键影响。我们的研究结果表明,由于多对一映射,倍频程跨度的超连续谱产生会导致数据集多样性的损失,而最佳性能需要在光学非线性与数据集复杂性之间取得平衡。这项研究通过解释非线性动力学与光学计算之间的相互作用,为设计节能且高性能的光子神经网络架构提供了指导。