Saeed Sobhi, Müftüoğlu Mehmet, Cheeran Glitta R, Bocklitz Thomas, Fischer Bennet, Chemnitz Mario
Leibniz-Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Nanophotonics. 2025 Jun 23;14(16):2749-2760. doi: 10.1515/nanoph-2025-0045. eCollection 2025 Aug.
The intrinsic complexity of nonlinear optical phenomena offers a fundamentally new resource to analog brain-inspired computing, with the potential to address the pressing energy requirements of artificial intelligence. We introduce and investigate the concept of nonlinear inference capacity in optical neuromorphic computing in highly nonlinear fiber-based optical Extreme Learning Machines. We demonstrate that this capacity scales with nonlinearity to the point where it surpasses the performance of a deep neural network model with five hidden layers on a scalable nonlinear classification benchmark. By comparing normal and anomalous dispersion fibers under various operating conditions and against digital classifiers, we observe a direct correlation between the system's nonlinear dynamics and its classification performance. Our findings suggest that image recognition tasks, such as MNIST, are incomplete in showcasing deep computing capabilities in analog hardware. Our approach provides a framework for evaluating and comparing computational capabilities, particularly their ability to emulate deep networks, across different physical and digital platforms, paving the way for a more generalized set of benchmarks for unconventional, physics-inspired computing architectures.
非线性光学现象的内在复杂性为模拟脑启发计算提供了一种全新的资源,有望满足人工智能迫切的能量需求。我们在基于高非线性光纤的光学极限学习机中引入并研究了光学神经形态计算中的非线性推理能力概念。我们证明,这种能力随非线性程度而扩展,直至在一个可扩展的非线性分类基准上超越具有五个隐藏层的深度神经网络模型的性能。通过在各种操作条件下比较正常色散光纤和反常色散光纤,并与数字分类器进行对比,我们观察到系统的非线性动力学与其分类性能之间存在直接关联。我们的研究结果表明,诸如MNIST之类的图像识别任务在展示模拟硬件中的深度计算能力方面并不完整。我们的方法提供了一个框架,用于评估和比较不同物理和数字平台的计算能力,特别是它们模拟深度网络的能力,为非传统的、受物理启发的计算架构制定一套更通用的基准铺平了道路。