Suppr超能文献

群体感受野模型以毫秒级分辨率捕捉与事件相关的脑磁图响应。

Population receptive field models capture the event-related magnetoencephalography response with millisecond resolution.

作者信息

Eickhoff Katharina, Hillebrand Arjan, de Jong Maartje C, Dumoulin Serge O

机构信息

Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.

Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.

出版信息

Imaging Neurosci (Camb). 2024 Sep 18;2. doi: 10.1162/imag_a_00285. eCollection 2024.

Abstract

Much of the visual system is organized into visual field maps. In humans, this organization can be studied non-invasively by estimating the receptive fields of populations of neurons (population receptive fields; pRFs) with functional magnetic resonance imaging (fMRI). However, fMRI cannot capture the temporal dynamics of visual processing that operate on a millisecond scale. Magnetoencephalography (MEG) does provide this temporal resolution but generally lacks the required spatial resolution. Here, we introduce a forward modeling approach that combines fMRI and MEG, enabling us to estimate pRFs with millisecond resolution. Using fMRI, we estimated the participant's pRFs using conventional pRF-modeling. We then combined the pRF models with a forward model that transforms the cortical responses to the MEG sensors. This enabled us to predict event-related field responses measured with MEG while the participants viewed brief (100 ms) contrast-defined bar and circle shapes. We computed the goodness of fit between the predicted and measured MEG responses across time using cross-validated variance explained. We found that the fMRI-estimated pRFs explained up to 91% of the variance in individual MEG sensor's responses. The variance explained varied over time and peaked between 75 ms to 250 ms after stimulus onset. Perturbing the pRF positions decreased the explained variance, suggesting that the pRFs were driving the MEG responses. In conclusion, pRF models can predict event-related MEG responses, enabling routine investigation of the spatiotemporal dynamics of human pRFs with millisecond resolution.

摘要

视觉系统的大部分都被组织成视野图。在人类中,可以通过功能磁共振成像(fMRI)估计神经元群体的感受野(群体感受野;pRFs),以非侵入性方式研究这种组织。然而,fMRI无法捕捉以毫秒为尺度运行的视觉处理的时间动态。脑磁图(MEG)确实提供了这种时间分辨率,但通常缺乏所需的空间分辨率。在这里,我们介绍一种结合fMRI和MEG的正向建模方法,使我们能够以毫秒分辨率估计pRFs。使用fMRI,我们使用传统的pRF建模方法估计参与者的pRFs。然后,我们将pRF模型与一个正向模型相结合,该正向模型将皮质反应转换为MEG传感器的反应。这使我们能够预测参与者观看短暂(100毫秒)的对比度定义的条形和圆形形状时用MEG测量的事件相关场反应。我们使用交叉验证解释的方差计算了预测和测量的MEG反应随时间的拟合优度。我们发现,fMRI估计的pRFs解释了单个MEG传感器反应中高达91%的方差。解释的方差随时间变化,并在刺激开始后75毫秒至250毫秒之间达到峰值。扰动pRF位置会降低解释的方差,这表明pRFs驱动了MEG反应。总之,pRF模型可以预测事件相关的MEG反应,从而能够以毫秒分辨率对人类pRFs的时空动态进行常规研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8cf/12290684/a7e3fe1efe92/imag_a_00285_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验