Mao Yixiang, Chen Conan, Nguyen Truong, Liu Thomas T
Center for Functional MRI, University of California San Diego, La Jolla, CA, United States.
Departments of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States.
Imaging Neurosci (Camb). 2024 May 6;2. doi: 10.1162/imag_a_00151. eCollection 2024.
Head motion is a significant source of artifacts in resting-state fMRI (rsfMRI) studies and has been shown to affect resting-state functional connectivity (rsFC) measurements. In many rsfMRI studies, motion parameters estimated from volume registration are used to characterize head motion and to mitigate motion artifacts in rsfMRI data. While prior task-based fMRI studies have shown that task-evoked brain activations may induce temporally correlated bias in the motion estimates, resulting in artificial activations after registration, relatively little is known about neural-related bias in rsfMRI motion parameter. In this study, we demonstrate that neural-related bias exists in rsfMRI motion estimates and characterize the potential effects of the bias on rsFC estimates. Using a public multi-echo rsfMRI dataset, we use the differences between motion estimates from the first echo and second echo data as a measure of neural-induced bias. We show that the resting-state global activity of the brain, as characterized with the global signal (GS), induces bias in the motion estimates in the y- and z-translational axes. Furthermore, we demonstrate that the GS-related bias reflects superior-inferior and anterior-posterior asymmetries in the GS beta coefficient map. Finally, we demonstrate that regression with biased motion estimates can negatively bias rsFC estimates and also reduce rsFC differences between young and old subjects.
头部运动是静息态功能磁共振成像(rsfMRI)研究中伪影的一个重要来源,并且已被证明会影响静息态功能连接(rsFC)测量。在许多rsfMRI研究中,从体积配准估计的运动参数被用于表征头部运动,并减轻rsfMRI数据中的运动伪影。虽然先前基于任务的功能磁共振成像研究表明,任务诱发的大脑激活可能会在运动估计中引起时间相关偏差,从而在配准后导致人为激活,但对于rsfMRI运动参数中与神经相关的偏差了解相对较少。在本研究中,我们证明了rsfMRI运动估计中存在与神经相关的偏差,并描述了该偏差对rsFC估计的潜在影响。使用一个公开的多回波rsfMRI数据集,我们将第一次回波和第二次回波数据的运动估计差异用作神经诱导偏差的一种度量。我们表明,以全局信号(GS)表征的大脑静息态全局活动会在y轴和z轴平移方向的运动估计中引起偏差。此外,我们证明了与GS相关的偏差反映了GSβ系数图中的上下和前后不对称性。最后,我们证明了使用有偏差的运动估计进行回归会对rsFC估计产生负偏差,并且还会减少年轻和老年受试者之间的rsFC差异。