利用脑成像数据和个性化建模描绘耐药性癫痫中的致痫网络。
Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy.
作者信息
Wang Huifang E, Woodman Marmaduke, Triebkorn Paul, Lemarechal Jean-Didier, Jha Jayant, Dollomaja Borana, Vattikonda Anirudh Nihalani, Sip Viktor, Medina Villalon Samuel, Hashemi Meysam, Guye Maxime, Makhalova Julia, Bartolomei Fabrice, Jirsa Viktor
机构信息
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery team, Paris F-75013, France.
出版信息
Sci Transl Med. 2023 Jan 25;15(680):eabp8982. doi: 10.1126/scitranslmed.abp8982.
Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.
准确估计致痫区网络(EZNs)对于制定治疗耐药性局灶性癫痫的干预策略至关重要。在此,我们介绍虚拟癫痫患者(VEP),这是一种使用个性化脑模型和机器学习方法来估计EZNs并辅助手术策略的工作流程。特定患者全脑网络模型的结构框架由解剖学T1和扩散加权磁共振成像构建而成。每个网络节点都配备有一个数学动力学模型来模拟癫痫发作活动。贝叶斯推理方法使用患者癫痫发作的功能立体脑电图记录对个性化模型的关键参数进行采样和优化。这些关键参数及其个性化模型共同决定了特定患者的EZNs。个性化模型还被用于通过虚拟手术预测手术干预的结果。我们使用53例耐药性局灶性癫痫患者对VEP工作流程进行了回顾性评估。VEP以0.6的精度再现了临床定义的EZNs,其中VEP识别出的致痫区域与临床定义的EZNs之间的物理距离较小。与25例接受手术患者的切除脑区相比,VEP在无癫痫发作患者中的假发现率(平均为0.028)低于非无癫痫发作患者(平均为0.407)。目前正在一项正在进行的临床试验(EPINOV)中对VEP进行评估,预计有356名前瞻性癫痫患者参与。